Max Cut and the Smallest Eigenvalue

Luca Trevisan

November 18, 2009

Theorem 1 (Main) There is an algorithm that, given a graph $G=(V, E)$ for which the optimum of the Max CUT problem is at least $1-\varepsilon$, and a parameter δ, finds a vector $y \in\{-1,0,1\}^{V}$ such that

$$
\frac{\sum_{i, j} A_{i, j}\left|y_{i}+y_{j}\right|}{\sum_{i} d_{i}\left|y_{i}\right|} \leq 4 \sqrt{\varepsilon}+\delta
$$

where $A_{i, j}$ is the weight of edge (i, j) and d_{i} is the (weighted) degree of vertex i.
The algorithm can be implemented in nearly-linear randomized time $O\left(\delta^{-2} \cdot(|V|+|E|) \cdot \log |V|\right)$.
Lemma 2 If the optimum Max CUT in G has cost at least $1-\varepsilon$, there is a vector $x \in \mathbb{R}^{V}$ such that

$$
x^{T}(D+A) x \leq 2 \varepsilon \cdot x^{T} D x
$$

Furthermore, for every $\delta>0$, we can find in time $O\left(\delta^{-1} \cdot(|E|+|V|) \cdot \log |V|\right)$ a vector $x \in \mathbb{R}^{V}$ such that

$$
x^{T}(D+A) x \leq(2 \varepsilon+\delta) \cdot x^{T} D x
$$

Lemma 3 Given a vector $x \in \mathbb{R}^{V}$ such that $x^{T}(D+A) x \leq \varepsilon \cdot x^{T} D x$, we can find in time $O(|E|+$ $|V| \log |V|)$ a vector $y \in\{-1,0,1\}^{V}$ such that

$$
\begin{equation*}
\frac{\sum_{i, j} A_{i, j}\left|y_{i}+y_{j}\right|}{\sum_{i} d_{i}\left|y_{i}\right|} \leq \sqrt{8 \varepsilon} \tag{1}
\end{equation*}
$$

