Max Cut and the Smallest Eigenvalue

LUCA TREVISAN

November 18, 2009

Theorem 1 (Main) There is an algorithm that, given a graph G = (V, E) for which the optimum of the Max CUT problem is at least $1 - \varepsilon$, and a parameter δ , finds a vector $y \in \{-1, 0, 1\}^V$ such that

$$\frac{\sum_{i,j} A_{i,j} |y_i + y_j|}{\sum_i d_i |y_i|} \le 4\sqrt{\varepsilon} + \delta$$

where $A_{i,j}$ is the weight of edge (i, j) and d_i is the (weighted) degree of vertex *i*. The algorithm can be implemented in nearly-linear randomized time $O(\delta^{-2} \cdot (|V| + |E|) \cdot \log |V|)$.

Lemma 2 If the optimum Max CUT in G has cost at least $1 - \varepsilon$, there is a vector $x \in \mathbb{R}^V$ such that

$$x^T (D+A) x \le 2\varepsilon \cdot x^T D x$$

Furthermore, for every $\delta > 0$, we can find in time $O(\delta^{-1} \cdot (|E| + |V|) \cdot \log |V|)$ a vector $x \in \mathbb{R}^V$ such that

$$x^T (D+A) x \le (2\varepsilon + \delta) \cdot x^T D x$$

Lemma 3 Given a vector $x \in \mathbb{R}^V$ such that $x^T(D+A)x \leq \varepsilon \cdot x^T Dx$, we can find in time $O(|E| + |V| \log |V|)$ a vector $y \in \{-1, 0, 1\}^V$ such that

$$\frac{\sum_{i,j} A_{i,j} |y_i + y_j|}{\sum_i d_i |y_i|} \le \sqrt{8\varepsilon} \tag{1}$$