Solving MAX-*r*-SAT above a Tight Lower Bound Noga Alon, Gregory Gutin, Eun Jung Kim, Stefan Szeider, and Anders Yeo presented by Ondra Suchý, 15.4.2010

Definition 1 Maximum *r*-Satisfiability Problem above Tight Lower Bound (Max-r-Sat_{tlb})

Input: Formula F = multiset of m clauses, each with exactly r literals, $k \in \mathbb{N}$ Question: Is there a truth assignment satisfying at least $((2^r - 1)m + k)/2^r$ clauses of F?

We will show: Decideable in $O(m) + 2^{O(k^2)}$ -time (r is a fixed constant - thorough the talk) Some notations:

- var(C), var(F)....variables occurring in clause C, in formula F resp.
- $\tau: V \to \{-1, 1\}$...truth assignment of variables V;
- 2^V ... all truth assignments
- $sat(\tau, F)$...number of clauses of F satisfied by τ
- $sat(F) = \max_{\tau \in 2^{var(F)}} sat(\tau, F)$

Definition 2 Parameterized problem L is any subset $L \subseteq \Sigma^* \times \mathbb{N}$ (Σ fixed alphabet). Parameterized problem L is fixed parameter tractable (FPT) iff the membership of an instance $(x,k) \in \Sigma^* \times \mathbb{N}$ in L can be decided in time $|x|^{O(1)} \cdot f(k)$.

Kernelization of L is a polynomial time algorithm mapping (x, k) to (x', k') (the kernel) s.t.

- (i) $(x,k) \in L \Leftrightarrow (x',k') \in L$
- (ii) $k' \leq f(k)$
- (iii) $|x'| \leq g(k)$

for some functions $f, g. g(k) \dots$ size of the kernel

Fact 1 $L \in FPT$ iff L decideable and admits kernelization.

bikernelization from L to L' ... same as kernelization except (i) $(x, k) \in L \Leftrightarrow (x', k') \in L'$

Lemma 2 If there is a polynomial (size) bikernel from L to L', L is NP-hard, and L' is in NP, then there is a polynomial kernel for L.

Definition 3 Max r-LIN2_{TLB}

Input: m linear equations e_1, \ldots, e_m in n variables over \mathbb{F}_2 , no equation has more than r variables, $w_i \in \mathbb{N}$ weight of $e_i, k \in \mathbb{N}$

Question: Is there an assignment of $\{0, 1\}$ to variables s.t. the total weight of satisfied equations is at least (W + k)/2, where $W = \sum w_j$?

 $F \dots r$ -CNF formula with clauses C_1, \dots, C_m and variables x_1, \dots, x_n

Algebraic representation

$$X = \sum_{C \in F} \left[1 - \prod_{x_i \in var(C)} (1 + \epsilon_i x_i) \right], \text{ where } \epsilon_i = \begin{cases} -1 & x_i \in C \\ 1 & \overline{x_i} \in C \end{cases}$$

Lemma 3 $\forall \tau \in 2^{var(F)} : X = 2^r (sat(\tau, F) - (1 - 2^{-r})m).$

Now we can rewrite X as

$$X = \sum_{I \in S} X_I; \quad X_I = c_I \prod_{i \in I} x_i; \quad c_I \in \mathbb{Z} \setminus \{0\}, \quad S \subseteq \binom{\{1, \dots, n\}}{r}$$

Our question: $\exists x_1, \ldots x_n : X(x_1, \ldots x_n) \ge k$? we show: S large \Rightarrow answer is yes

we assume: each x_i randomly independently -1 with prob. 1/2 and 1 with prob. 1/2.

Lemma 4 $\forall X$ real random variable with $0 < \mathbb{E}(X^4) < \infty$:

$$\mathbb{E}(|X|) \ge \frac{\mathbb{E}(X^2)^{3/2}}{\mathbb{E}(X^4)^{1/2}}$$

Corollary 5 X real rand. var., $\mathbb{E}X = 0, \mathbb{E}X^2 = \sigma^2 > 0, \mathbb{E}X^4 \le b\sigma^4$. Then $\mathbb{P}(X \ge \frac{\sigma}{2\sqrt{b}}) > 0$.

Lemma 6 (Bourgain 1980) Let $f(x_1, \ldots, x_n)$ be a real polynomial of degree r. Choose $(\epsilon_1, \ldots, \epsilon_n) \in \{-1, 1\}^n$ uniformly at random and set $X = f(\epsilon_1, \ldots, \epsilon_n)$. Then $\mathbb{E}X^4 \leq 2^{6r} (\mathbb{E}X^2)^2$.

Lemma 7 Let $X = \sum_{I \in S} X_I$ as above, assume $X \neq 0$. Then $\mathbb{E}X = 0, \mathbb{E}X^2 = \sum_{I \text{ in } S} c_I^2 \geq |S| > 0, \mathbb{E}X^4 \leq 2^{6r} (\mathbb{E}X^2)^2$.

Theorem 8 (Main theorem) MAX-r-SAT_{TLB} is FPT, can be solved in time $O(m) + 2^{O(k^2)}$. Moreover, there exist an $O(k^2)$ -size bikernel from MAX-r-SAT_{TLB} to MAX-r-LIN2_{TLB} and $O(k^2)$ kernel for MAX-r-SAT_{TLB}.