# Solving MAX- $r$-SAT above a Tight Lower Bound <br> Noga Alon, Gregory Gutin, Eun Jung Kim, Stefan Szeider, and Anders Yeo presented by Ondra Suchý, 15.4.2010 

Definition 1 Maximum $r$-Satisfiability Problem above Tight Lower Bound (MAX-r-SAT ${ }_{\text {tLb }}$ )
Input: Formula $F=$ multiset of $m$ clauses, each with exactly $r$ literals, $k \in \mathbb{N}$
Question: Is there a truth assignment satisfying at least $\left(\left(2^{r}-1\right) m+k\right) / 2^{r}$ clauses of $F$ ?
We will show: Decideable in $O(m)+2^{O\left(k^{2}\right)}$-time ( $r$ is a fixed constant - thorough the talk) Some notations:

- $\operatorname{var}(C), \operatorname{var}(F) \ldots$...variables occurring in clause $C$, in formula $F$ resp.
- $\tau: V \rightarrow\{-\mathbf{1}, \mathbf{1}\} \ldots$..truth assignment of variables $V$;
- $2^{V}$... all truth assignments
- $\operatorname{sat}(\tau, F) \ldots$ number of clauses of $F$ satisfied by $\tau$
- $\operatorname{sat}(F)=\max _{\tau \in 2^{\operatorname{var}(F)}} \operatorname{sat}(\tau, F)$

Definition 2 Parameterized problem $L$ is any subset $L \subseteq \Sigma^{*} \times \mathbb{N}$ ( $\Sigma$ fixed alphabet).
Parameterized problem L is fixed parameter tractable (FPT) iff the membership of an instance $(x, k) \in \Sigma^{\star} \times \mathbb{N}$ in $L$ can be decided in time $|x|^{O(1)} \cdot f(k)$.
Kernelization of $L$ is a polynomial time algorithm mapping $(x, k)$ to $\left(x^{\prime}, k^{\prime}\right)$ (the kernel) s.t.
(i) $(x, k) \in L \Leftrightarrow\left(x^{\prime}, k^{\prime}\right) \in L$
(ii) $k^{\prime} \leq f(k)$
(iii) $\left|x^{\prime}\right| \leq g(k)$
for some functions $f, g . g(k)$... size of the kernel
Fact $1 L \in F P T$ iff $L$ decideable and admits kernelization.
bikernelization from $L$ to $L^{\prime}$... same as kernelization except (i) $(x, k) \in L \Leftrightarrow\left(x^{\prime}, k^{\prime}\right) \in L^{\prime}$
Lemma 2 If there is a polynomial (size) bikernel from $L$ to $L^{\prime}, L$ is $N P$-hard, and $L^{\prime}$ is in $N P$, then there is a polynomial kernel for $L$.

Definition 3 Max $r$-Lin $2_{\text {tlb }}$
Input: $m$ linear equations $e_{1}, \ldots, e_{m}$ in $n$ variables over $\mathbb{F}_{2}$, no equation has more than $r$ variables, $w_{j} \in \mathbb{N}$ weight of $e_{j}, k \in \mathbb{N}$
Question: Is there an assignment of $\{0,1\}$ to variables s.t. the total weight of satisfied equations is at least $(W+k) / 2$, where $W=\sum w_{j}$ ?
$F \ldots r$-CNF formula with clauses $C_{1}, \ldots, C_{m}$ and variables $x_{1}, \ldots, x_{n}$

## Algebraic representation

$$
X=\sum_{C \in F}\left[1-\prod_{x_{i} \in \operatorname{var}(C)}\left(1+\epsilon_{i} x_{i}\right)\right], \text { where } \epsilon_{i}=\left\{\begin{aligned}
-1 & x_{i} \in C \\
1 & \overline{x_{i}} \in C
\end{aligned}\right.
$$

Lemma $3 \forall \tau \in 2^{\operatorname{var}(F)}: X=2^{r}\left(\operatorname{sat}(\tau, F)-\left(1-2^{-r}\right) m\right.$.
Now we can rewrite $X$ as

$$
X=\sum_{I \in S} X_{I} ; \quad X_{I}=c_{I} \prod_{i \in I} x_{i} ; \quad c_{I} \in \mathbb{Z} \backslash\{0\}, \quad S \subseteq\binom{\{1, \ldots, n\}}{r}
$$

Our question: $\exists x_{1}, \ldots x_{n}: X\left(x_{1}, \ldots x_{n}\right) \geq k$ ?
we show: $S$ large $\Rightarrow$ answer is yes
we assume: each $x_{i}$ randomly independently -1 with prob. $1 / 2$ and 1 with prob. $1 / 2$.
Lemma $4 \forall X$ real random variable with $0<\mathbb{E}\left(X^{4}\right)<\infty$ :

$$
\mathbb{E}(|X|) \geq \frac{\mathbb{E}\left(X^{2}\right)^{3 / 2}}{\mathbb{E}\left(X^{4}\right)^{1 / 2}}
$$

Corollary $5 X$ real rand. var., $\mathbb{E} X=0, \mathbb{E} X^{2}=\sigma^{2}>0, \mathbb{E} X^{4} \leq b \sigma^{4}$. Then $\mathbb{P}\left(X \geq \frac{\sigma}{2 \sqrt{b}}\right)>0$.
Lemma 6 (Bourgain 1980) Let $f\left(x_{1}, \ldots, x_{n}\right)$ be a real polynomial of degree $r$. Choose $\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) \in\{-1,1\}^{n}$ uniformly at random and set $X=f\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$. Then $\mathbb{E} X^{4} \leq 2^{6 r}\left(\mathbb{E} X^{2}\right)^{2}$.

Lemma 7 Let $X=\sum_{I \in S} X_{I}$ as above, assume $X \not \equiv 0$. Then $\mathbb{E} X=0, \mathbb{E} X^{2}=\sum_{I}{ }_{\text {inS }} c_{I}^{2} \geq$ $|S|>0, \mathbb{E} X^{4} \leq 2^{6 r}\left(\mathbb{E} X^{2}\right)^{2}$.

Theorem 8 (Main theorem) MAX-r-SAT TLB is FPT, can be solved in time $O(m)+2^{O\left(k^{2}\right)}$. Moreover, there exist an $O\left(k^{2}\right)$-size bikernel from MAX- $r$ - SAT $_{\text {TLB }}$ to MAX- $r$-LIN2 $2_{\text {TLB }}$ and $O\left(k^{2}\right)$ kernel for MAX-r-SAT TLb .

