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Parity check code C(G) defined by a bipartite graph G = (VL ∪ VR, E) is the set of
0/1 assignments to VL such that for all j ∈ VR,

∑
i∈N(j) ≡ 0 mod 2. VL are the variable

nodes, VR the check nodes. |VL| = n, |VR| = m.

Low-density parity check code is a parity check code defined by a graph with constant
(or bounded) degrees, dL and dR.

Nearest codeword problem. Given y ∈ {0, 1}n, find x ∈ C(G) with minimal |x− y|1.

LP decoding program for the nearest codeword problem. Given y ∈ {0, 1}n, minimize
|x− y|1 subject to

x ∈
⋂
j∈VR

ConvCj .

Main theorem 1. Let G be a (3, 6)-regular bipartite graph of girth Ω(log n), p ≤ 0.05
and x ∈ {0, 1}n a codeword of C(G). Suppose y was obtained from x by flipping each bit
independently with probability p. Then with probability at least 1− exp(−nγ) for some
γ > 0
• x is the optimal solution to the LP decoding algorithm.
• a simple message-passing (dynamic programming) algorithm computes the codeword
x from y and certifies that it is the codeword nearest to y in time O(n log n).

Note. The girth requirement can be lowered to Ω(log log n) making the decoding proba-
bility 1− 1/poly(n) and running time O(n log log n).

T -local deviation at i0 ∈ VL is an assignment β ∈ {0, 1}n with βi0 = 1 and satisfying
all the checks in N2T (i0). A T -local deviation is minimal if all check nodes in N2T (i0)
have 0 or 2 neighbours set to 1 and all variable nodes outside N2T (i0) are set to 0.
For a minimal T -local deviation at i0 β and weights w = (w1, . . . , wT ), the w-weighted
deviation β(w) has β(w)

i = βiwt if dist(i0, i) = 2t, 1 ≤ t ≤ T and β
(w)
i = 0 otherwise.

A codeword x ∈ {0, 1}n is (T,w)-locally optimal for y ∈ {0, 1}n if for all T -local
deviations β,

|x⊕ β(w) − y|1 > |x− y|1,

where (a⊕ b)i = |ai − bi|1. Note that the T -local deviation at i minimizing the left side
can be computed by dynamic programming.

Theorems 2-4. Let T < 1
4 girth(G) and w = (w1, . . . , wT ) ≥ 0. If x is a (T,w)-locally

optimal codeword for y ∈ {0, 1}n, then
(2) x is the unique nearest codeword for y. (local optimality certificate)
(3) the w-weighted min-sum algorithm computes x in T iterations.
(4) x is the unique optimal solution to the LP decoding program.



Theorem 5 (local optimality of a codeword). Let G be a (dL, dR)-regular bipartite
graph and T < 1

4 girth(G). Let 0 < p < 1 and x ∈ {0, 1}n a codeword of C(G). Suppose
y was obtained from x by flipping every bit independently with probability p.

1. If dL, dR and p satisfy a technical condition (which is met for dL = 3, dR = 6
and p ≤ 0.02) then x is (T, 1)-locally optimal with probability at least 1−nc−(dL−1)T

for
some constant c > 1.

2. If dL, dR and p satisfy another technical condition (which is met for dL = 3,
dR = 6 and p ≤ 0.0247) then there is w ∈ [0, 1]T such that x is (T,w)-locally optimal
with probability at least 1− nc−(dL−1)T

for some constant c > 1.
3. If dL = 3, dR = 6 and p ≤ 0.05 then x is (T,w)-locally optimal with probability at

least 1−nc−2T

for some weight-vector w ≤ 0 and some constant c > 1. x is (T,1)-locally
optimal with probability at least 1− nc−(dL−1)T

for some c > 1.

Lemma 1. Let T < 1
4 girth(G). Then for every codeword z 6= 0 there is a distribution

over minimal T -local deviations β, such that for every weight-vector w ∈ [0, 1]T ,

Eβ(w) = αz

for some scaling-constant α ≤ 0.

Lemma 2. Let T < 1
4 girth(G) and w ∈ [0, 1]T . Then for every non-zero LP solution

z ∈ [0, 1]n, there is a distribution over minimal T -local deviations β such that

Eβ(w) = αz

for some scaling-constant α ≤ 0.

Lemma 3. Let x be a codeword and x′ an LP solution. Then x ⊕ x′ is also an LP
solution.

Lemma 4. Let z be a non-zero LP solution. There are functions pj for every j ∈ VR,
pj : N(j)×N(j)→ [0, 1] such that for every i ∈ N(j),

zi =
∑

i′∈N(j)\{i}

pj(i, i′)

and for i, i′ ∈ N(j) symmetric, i.e. pj(i, i′) = pj(i′, i).


