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Parity check code C(G) defined by a bipartite graph G = (Vi U Vg, E) is the set of
0/1 assignments to V, such that for all j € Vg, ZieN(j) = 0 mod 2. V}, are the variable
nodes, Vg the check nodes. |Vp| =n, |Vg| =m.

Low-density parity check code is a parity check code defined by a graph with constant
(or bounded) degrees, d;, and dg.

Nearest codeword problem. Given y € {0,1}", find z € C(G) with minimal |z — y|;.

LP decoding program for the nearest codeword problem. Given y € {0,1}", minimize
| — y|1 subject to
T € ﬂ ConvC;.
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Main theorem 1. Let G be a (3,6)-regular bipartite graph of girth Q(logn), p < 0.05
and x € {0,1}"™ a codeword of C(G). Suppose y was obtained from z by flipping each bit
independently with probability p. Then with probability at least 1 — exp(—n?) for some
v>0

e 1 is the optimal solution to the LP decoding algorithm.

e a simple message-passing (dynamic programming) algorithm computes the codeword

x from y and certifies that it is the codeword nearest to y in time O(nlogn).

Note. The girth requirement can be lowered to Q(loglogn) making the decoding proba-
bility 1 — 1/poly(n) and running time O(nloglogn).

T-local deviation at iy € V7, is an assignment § € {0,1}" with 3;, = 1 and satisfying
all the checks in N?T(ig). A T-local deviation is minimal if all check nodes in N7 (i)
have 0 or 2 neighbours set to 1 and all variable nodes outside N7 (ig) are set to 0.

For a minimal T-local deviation at ig 8 and weights w = (w1, ..., wr), the w-weighted

deviation ) has ﬂi(w) = Biw if dist(ip,7) = 2t,1 <t < T and ﬂi(w) = 0 otherwise.

A codeword z € {0,1}" is (T, w)-locally optimal for y € {0,1}" if for all T-local
deviations J3,
jz @ B8 —yly > [& -yl

where (a @ b); = |a; — b;|1. Note that the T-local deviation at ¢ minimizing the left side
can be computed by dynamic programming.

Theorems 2-4. Let T' < 1 girth(G) and w = (w1,...,wr) > 0. If z is a (T, w)-locally
optimal codeword for y € {0,1}", then

(2) z is the unique nearest codeword for y. (local optimality certificate)

(3) the w-weighted min-sum algorithm computes z in T iterations.

(4) z is the unique optimal solution to the LP decoding program.



Theorem 5 (local optimality of a codeword). Let G be a (dr, dg)-regular bipartite
graph and T’ < 1 girth(G). Let 0 < p < 1 and = € {0,1}" a codeword of C(G). Suppose
y was obtained from z by flipping every bit independently with probability p.

1. If dy, dg and p satisfy a technical condition (which is met for d;, = 3, dg = 6
and p < 0.02) then z is (T, 1)-locally optimal with probability at least 1 — ne=(@d=0" for
some constant ¢ > 1.

2. If dy, dr and p satisfy another technical condition (which is met for d; = 3,

dr = 6 and p < 0.0247) then there is w € [0,1]7 such that z is (T, w)-locally optimal

with probability at least 1 — ne=@2=1" for some constant ¢ > 1.

3. If dr, =3, dr = 6 and p < 0.05 then z is (T, w)-locally optimal with probability at
least 1 —nc=2" for some weight-vector w < 0 and some constant ¢ > 1.  is (T, ¥)-locally
optimal with probability at least 1 — ne= =" for some ¢ > 1.

Lemma 1. Let T < % girth(G). Then for every codeword z # 0 there is a distribution
over minimal T-local deviations 3, such that for every weight-vector w € [0,1]7

ES™ = az

for some scaling-constant o < 0.

Lemma 2. Let T < § girth(G) and w € [0,1]7. Then for every non-zero LP solution
z € [0,1]™, there is a distribution over minimal T-local deviations [ such that

ES™ = az

for some scaling-constant o < 0.

Lemma 3. Let  be a codeword and 2’ an LP solution. Then x @ 2’ is also an LP
solution.

Lemma 4. Let z be a non-zero LP solution. There are functions p; for every j € Vg,
p; : N(j) x N(j) — [0,1] such that for every ¢ € N(j),

Zy = Z Dj (’L,l/)

eN@G\{i}

and for 7,7’ € N(j) symmetric, i.e. p;(i,7') = p; (¢, ).



