Massage-Passing Algorithms and Improved LP Decoding

Sanjeev Arora

Constantinos Daskalakis

David Steuer

presented by Tomáš Gavenčiak

Parity check code $\mathbb{C}(G)$ defined by a bipartite graph $G = (V_L \cup V_R, E)$ is the set of 0/1 assignments to V_L such that for all $j \in V_R$, $\sum_{i \in N(j)} \equiv 0 \mod 2$. V_L are the variable nodes, V_R the check nodes. $|V_L| = n$, $|V_R| = m$.

Low-density parity check code is a parity check code defined by a graph with constant (or bounded) degrees, d_L and d_R .

Nearest codeword problem. Given $y \in \{0,1\}^n$, find $x \in \mathbb{C}(G)$ with minimal $|x-y|_1$.

LP decoding program for the nearest codeword problem. Given $y \in \{0, 1\}^n$, minimize $|x - y|_1$ subject to

$$x \in \bigcap_{j \in V_R} \operatorname{Conv} \mathbb{C}_j.$$

Main theorem 1. Let G be a (3, 6)-regular bipartite graph of girth $\Omega(\log n)$, $p \leq 0.05$ and $x \in \{0, 1\}^n$ a codeword of $\mathbb{C}(G)$. Suppose y was obtained from x by flipping each bit independently with probability p. Then with probability at least $1 - \exp(-n^{\gamma})$ for some $\gamma > 0$

- x is the optimal solution to the LP decoding algorithm.
- a simple message-passing (dynamic programming) algorithm computes the codeword x from y and certifies that it is the codeword nearest to y in time $O(n \log n)$.

Note. The girth requirement can be lowered to $\Omega(\log \log n)$ making the decoding probability 1 - 1/poly(n) and running time $O(n \log \log n)$.

T-local deviation at $i_0 \in V_L$ is an assignment $\beta \in \{0, 1\}^n$ with $\beta_{i_0} = 1$ and satisfying all the checks in $N^{2T}(i_0)$. A *T*-local deviation is *minimal* if all check nodes in $N^{2T}(i_0)$ have 0 or 2 neighbours set to 1 and all variable nodes outside $N^{2T}(i_0)$ are set to 0.

For a minimal *T*-local deviation at $i_0 \beta$ and weights $w = (w_1, \ldots, w_T)$, the *w*-weighted deviation $\beta^{(w)}$ has $\beta^{(w)}_i = \beta_i w_t$ if dist $(i_0, i) = 2t, 1 \le t \le T$ and $\beta^{(w)}_i = 0$ otherwise.

A codeword $x \in \{0,1\}^n$ is (T,w)-locally optimal for $y \in \{0,1\}^n$ if for all T-local deviations β ,

$$|x \oplus \beta^{(w)} - y|_1 > |x - y|_1,$$

where $(a \oplus b)_i = |a_i - b_i|_1$. Note that the *T*-local deviation at *i* minimizing the left side can be computed by dynamic programming.

Theorems 2-4. Let $T < \frac{1}{4} \operatorname{girth}(G)$ and $w = (w_1, \ldots, w_T) \ge 0$. If x is a (T, w)-locally optimal codeword for $y \in \{0, 1\}^n$, then

- (2) x is the unique nearest codeword for y. (local optimality certificate)
- (3) the w-weighted min-sum algorithm computes x in T iterations.

(4) x is the unique optimal solution to the LP decoding program.

Theorem 5 (local optimality of a codeword). Let G be a (d_L, d_R) -regular bipartite graph and $T < \frac{1}{4}$ girth(G). Let $0 and <math>x \in \{0, 1\}^n$ a codeword of $\mathbb{C}(G)$. Suppose y was obtained from x by flipping every bit independently with probability p.

1. If d_L , d_R and p satisfy a technical condition (which is met for $d_L = 3$, $d_R = 6$ and $p \le 0.02$) then x is (T, 1)-locally optimal with probability at least $1 - nc^{-(d_L - 1)^T}$ for some constant c > 1.

2. If d_L , d_R and p satisfy another technical condition (which is met for $d_L = 3$, $d_R = 6$ and $p \le 0.0247$) then there is $w \in [0, 1]^T$ such that x is (T, w)-locally optimal with probability at least $1 - nc^{-(d_L - 1)^T}$ for some constant c > 1.

3. If $d_L = 3$, $d_R = 6$ and $p \le 0.05$ then x is (T, w)-locally optimal with probability at least $1 - nc^{-2^T}$ for some weight-vector $w \le 0$ and some constant c > 1. x is (T, \mathbb{K}) -locally optimal with probability at least $1 - nc^{-(d_L-1)^T}$ for some c > 1.

Lemma 1. Let $T < \frac{1}{4}$ girth(G). Then for every codeword $z \neq 0$ there is a distribution over minimal T-local deviations β , such that for every weight-vector $w \in [0, 1]^T$,

$$\mathbb{E}\beta^{(w)} = \alpha z$$

for some scaling-constant $\alpha \leq 0$.

Lemma 2. Let $T < \frac{1}{4} \operatorname{girth}(G)$ and $w \in [0,1]^T$. Then for every non-zero LP solution $z \in [0,1]^n$, there is a distribution over minimal *T*-local deviations β such that

$$\mathbb{E}\beta^{(w)} = \alpha z$$

for some scaling-constant $\alpha \leq 0$.

Lemma 3. Let x be a codeword and x' an LP solution. Then $x \oplus x'$ is also an LP solution.

Lemma 4. Let z be a non-zero LP solution. There are functions p_j for every $j \in V_R$, $p_j : N(j) \times N(j) \to [0, 1]$ such that for every $i \in N(j)$,

$$z_i = \sum_{i' \in N(j) \setminus \{i\}} p_j(i,i')$$

and for $i, i' \in N(j)$ symmetric, i.e. $p_j(i, i') = p_j(i', i)$.