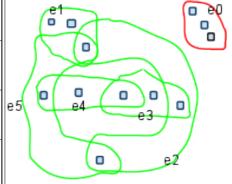
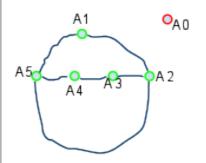
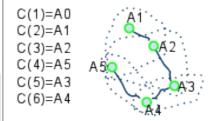
\mathcal{A}	set of events in Ω
$G^L_{\mathcal{A}}$	dependency graph of $\ensuremath{\mathcal{A}}$ in the sense of Lovasz as you all know it.
Ω	$=\prod_{P\in\mathcal{P}}P$ (prob. space is product of coordinates)
$P \in \mathcal{P}$	coordinate in Ω
coor(A)	each $A\in\mathcal{A}$ depends on some unique minimal subset $\mathrm{coor}(A)\subseteq\mathcal{P}$ of coordinates
$G = G_A$	dependency graph of $\mathcal A$ in the sense of Moser: $A \not = B \in \mathcal A$ forms an edge $(\mathrm{coor}(A))$ intersects $\mathrm{coor}(B)$
$\Gamma(A)^{+}$	$=\Gamma_{\mathcal{A}}(A)^{f +}$ neighborhood of A in $G_{\mathcal{A}}$ (including A)







Algorithm

For all $P \in \mathcal{P}^{i:=0}$

 $v_P \leftarrow$ a random evaluation of P

While $\exists A \in \mathcal{A} : A \text{ is violated when } (P = V_P : \forall P \in \mathcal{P})$

Pick an arbitrary violated event A ∈ A C(i):=A; i:=i+1

For all $P \in coor(A)$

 $v_P \leftarrow$ a new random evaluation of P

Return $(v_P)_{\forall P \in \mathcal{P}}$

Theorem

If there exists an assignment of reals $x:\mathcal{A}\to(0,1)$ such that

$$\forall A \in \mathcal{A} : Pr[A] \leq x(A) \prod_{B \in \Gamma(A)} (1 - x(B)),$$

then the algorithm terminates after resampling each event A an expected x(A)/(1-x(A)) times. The total number of resampling steps is $\sum_{A\in\mathcal{A}}\frac{x(A)}{1-x(A)}$.

C	log of execution: $=C:N\to \mathcal{P}$ is sequence of resampled events in their order in execution of the algorithm.
τ	witness tree: $=(T,\sigma_{\tau})$ is a finite rooted tree with labeling σ_{τ} : $V(T) \to \mathcal{A}$ of its vertices such that children of a vertex $u \in V(T)$ receive labels from $\Gamma^+(\sigma_T(u))$.
[v]	Shortcuts: $[v]:=\sigma_T(v)$ and rather obviously $V(\tau):=V(T)$
	If distinct children of the same vertex receive distinct labels, we call the tree proper .
$\tau_C(t)$	a witness tree associated with resampling step t . It is defined as $ au_C^{(1)}(t)$, which we get backward-inductively as follows:
$ au_C^{(t)}(t)$	is defined as isolated root labeled ${\cal C}(t)$.