ON THE POWER OF LINEAR DEPENDENCIES

Imre Bárány

October 22, 2009

Presented by Marek Tesař

STEINITZ LEMMA problem: we have *d*-dimensional Euclidean space \mathbb{R}^d , together with norm ||.|| and unit ball *B*. Let $V \subset B$ is finite subset of vectors in the unit ball *B* such that $\sum_{v \in V} v = 0$. We want to find ordering v_1, v_2, \ldots, v_n of vectors from *V* in such way, that size of all partial sums $\sum_{i=1}^k v_i$ (for $k \in [n]$) are bounded by a number that only depends on *B*.

Theorem 1 (Steinitz lemma) Given a finite set $V \subset B$ with $\sum_{v \in V} v = 0$, where B is the unit ball of a norm in \mathbb{R}^d , there is an ordering v_1, v_2, \ldots, v_n of the elements of V such that for all $k \in [n]$

$$\sum_{i=1}^k v_i \in dB$$

Theorem 2 Given a finite set $V \subset B_2$ with $\sum_{v \in V} v = 0$, there is an ordering v_1, v_2, \ldots, v_n of the elements of V such that for all $k \in [n]$

$$\sum_{i=1}^k v_i \in \sqrt{\frac{4^d - 1}{3}}B$$

Lets define the smallest constant the Steinitz lemma hold by S(B) (so $S(B) \leq d$ for all B in \mathbb{R}^d). For non-symetric norms is $S(B) \leq d$ the best possible. But there are other results for some norms: $S(B_1) \geq \frac{d}{2}$, $S(B_2^2) = \frac{\sqrt{5}}{2}$, $S(B_2^d) \geq \frac{\sqrt{d+3}}{2}$,... It is conjectured that $S(B_2^d) = O(\sqrt{d})$ and $S(B_{\infty}^d) = O(\sqrt{d})$, but even much weaker $S(B_2^d) = o(d)$ and $S(B_{\infty}^d) = o(d)$ estimates seems to be out of reach.

SIGNED SUM problem: $V \subset B$ is a finite set and we want signs $\varepsilon(v) = 1$ or -1 for all $v \in V$, such that $\sum_{v \in V} \varepsilon(v)v$ is not too large.

Theorem 3 Let $V \subset B_2$ be finite set of vectors, then there are signs $\varepsilon(v)$ such that

$$\sum_{v \in V} \varepsilon(v) v \in \sqrt{d}B_2$$

The example when V consist of d pairwise orthogonal unit vectors shows that the above estimate is best possible.

SIGNING VECTOR SEQUENCES problem: Let U be sequence (finite or infinite of vectors u_1, u_2, \ldots from the symmetric unit ball $B \subset \mathbb{R}^d$. We wish to finds signs $\varepsilon_i \in \{+1, -1\}$ such that all partial sums $\sum_{i=1}^n \varepsilon_i u_i$ are bounded by a constant depending only on B.

Theorem 4 Under the above conditions there are signs ε_i such that for all $n \in \mathbb{N}$

$$\sum_{i=1}^n \varepsilon_i u_i \in 2dB$$

Define the sign sequence constant, E(B), of unit ball B is the smallest blow up factor for which previous theorem hold. The methods for the Steinitz constant S(B) and the sign sequence constant E(B) are similar, and so are bounds.

Theorem 5 Assume B is the unit ball of symmetric norm in \mathbb{R}^d . Then

 $S(B) \le E(B)$