Intersection Patterns of Curves

Jacob Fox, János Pach and Csaba D. Tóth

Definitions

- A family \mathcal{F} of finite graphs has the Erdös-Hajnal property if there is a constant $c(\mathcal{F})>0$ such that every graph in \mathcal{F} on n vertices contains a clique or an independent set of size at least $n^{c(\mathcal{F})}$.
- bi-clique: a complete bipartite graph whose vertex classes differ in size by at most one
- A family \mathcal{F} of finite graphs has the strong Erdős-Hajnal property if there is a constant $b(\mathcal{F})>0$ such that for every graph $G \in \mathcal{F}$ on $n>1$ vertices, G or its complement \bar{G} contains a bi-clique of size at least $b(\mathcal{F}) n$.

Observation [Alon, Pach, Pinchasi, Radoičić, Sharir, 2005]. For a hereditary family \mathcal{F}, the Strong Erdős-Hajnal property implies the Erdős-Hajnal property.

Theorem [Alon et al., 2005]. Intersection graphs of semialgebraic sets of constant description complexity in \mathbb{R}^{d} have the Strong Erdős-Hajnal property.

Main Theorem. Let C be a k-intersecting collection of $n>1$ curves in the plane such that the number of intersecting pairs of curves is at least εn^{2}, for some $\varepsilon>0$. Then the intersection graph of C contains a bi-clique of size at least $c_{k} \varepsilon^{64} n$, where $c_{k}>0$ is a constant that depends only on k.
Corollary. For every $k \in \mathbb{N}$, the family of intersection graphs of k-intersecting collections of curves in the plane has the strong Erdős-Hajnal property.

Proof of the Main Theorem

- comparability graph of a poset $(P,<)$ is a graph $(P,<\cup>)$
- incomparability graph of a poset $(P,<)$ is a complement of the comparability graph of $(P,<)$
- permutation graph is a comparability graph of a two-dimensional poset (intersection of two linear orders)
- interval graph is an intersection graph of subintervals of \mathbb{R}
- [0, 1]-curve is a curve with endpoints on the lines $L_{1}: x=0$ and $L_{2}: x=1$ contained in the strip between L_{1} and L_{2}

Observation. The following three statements are equivalent:
(i) G is an incomparability graph.
(ii) G is the intersection graph of a collection of $[0,1]$-curves.
(iii) G is the intersection graph of a collection of x-monotone $[0,1]$-curves.

Lemma PERM. If G is a $K_{t, t}$-free permutation graph with n vertices, then G is $(2 t-2)$-degenerate. In particular, G has at most $(2 t-2) n-\binom{2 t-1}{2}$ edges.

Lemma coINT. If G is a $K_{t, t}$-free complement of an interval graph with n elements, then G has at most $2(t-1) n$ edges.

Lemma INC. If G is a $K_{t, t}$-free incomparability graph with n vertices and $m \geq$ $\sqrt{5 t n^{3}}$ edges, then G contains an induced subgraph with at least $m^{2} / 5 n^{3}$ vertices and edge density at least $1-10 t n^{3} / m^{2}$.
Lemma 1. Let k be a positive integer, let A a be collection of double-grounded curves with grounds γ_{1} and γ_{2}, and let B be a collection of curves such that each curve in B intersects γ_{1} and γ_{2} in at most k points. If, for some $d \geq 6$,
(i) each curve in A intersects at most d other curves in A, and
(ii) each curve of B intersects at least $15 k d$ curves in A,
then there are subsets $A^{\prime} \subset A$ and $B^{\prime} \subset B$ of size $\left|A^{\prime}\right| \geq d / 3$ and $\left|B^{\prime}\right| \geq \frac{d|B|}{3|A|}$ such that every curve in A^{\prime} intersects every curve in B^{\prime}.

Lemma 2. Let $k \geq 1$ and $m \geq 144$ be integers, let A be a collection of doublegrounded curves with grounds γ_{1} and γ_{2}, and let B be a collection of curves such that every curve in B intersects γ_{1} and γ_{2} in at most k points. If
(i) there are at most m intersecting pairs in A, and
(ii) there are at least $20 k \sqrt{m}|B|$ intersecting pairs in $A \times B$, then there are subsets $A^{\prime} \subset A$ and $B^{\prime} \subset B$ of size $\left|A^{\prime}\right| \geq \sqrt{m} / 7$ and $\left|B^{\prime}\right| \geq k m|B| /|A|^{2}$ such that every curve in A^{\prime} intersects every curve in B^{\prime}.
Theorem 3. (Main Theorem for [0, 1]-curves)
Given a k-intersecting collection C of $n[0,1]$-curves with at least εn^{2} intersecting pairs, its intersection graph contains a bi-clique of size at least $c_{k} \varepsilon^{2} n$, where $c_{k}>0$ depends only on k .
proof: by induction on k
$f(\varepsilon, \delta, k, n):=$ the largest integer $t \in \mathbb{N}$ such that for any collection C of $n[0,1]$ curves in the plane in general position with at least εn^{2} intersecting pairs, at most δn^{2} pairs of which intersect in more than k points, the intersection graph of C contains $K_{t, t}$.
Lemma 3.1. (base case of the induction)

$$
f\left(\varepsilon, \frac{\varepsilon}{2}, 1, n\right) \geq \frac{\varepsilon}{4} n .
$$

Theorem 3.k. (induction step)
For all $\varepsilon, \delta>0$ with $4000 \delta \leq \varepsilon^{4}, k \geq 2, n \geq 2$, and $t \leq \frac{\varepsilon^{2} n}{10^{7} k}$, we have

$$
f(\varepsilon, \delta, k, n) \geq \min \left(t, f\left(\varepsilon^{\prime}, \delta^{\prime}, k-1, n^{\prime}\right)\right)
$$

where $\varepsilon^{\prime}=\frac{1}{10^{6} k^{2}}, \delta^{\prime}=10^{6}\left(\frac{\delta}{\varepsilon^{4}}+\frac{t}{\varepsilon^{2} n}\right)$, and $n^{\prime} \geq \frac{\varepsilon^{2} n}{250}$.
Theorem 4. (Main Theorem for grounded curves)
Let C be a k-intersecting collection of n curves. Suppose that $C_{1} \subseteq C$ is a collection of grounded curves with ground $g, C_{2}=C \backslash C_{1}$ is a collection of curves disjoint from g, and there are at least εn^{2} intersecting (nonidentical) pairs in $C_{1} \times C$.
(i) If $C=C_{1}$ (hence $C_{2}=\emptyset$), then the intersection graph of C contains a bi-clique of size at least $c k \varepsilon^{8} n$, where $c_{k}>0$ is a constant depending on k only.
(ii) Otherwise, the intersection graph of C contains a bi-clique of size at least $c_{k}^{\prime} \varepsilon^{32} n$, where $c_{k}^{\prime}>0$ is a constant depending on k only.

