On the measure of intersecting families, uniqueness and stability

Ehud Friegut

Presented by Martin Tancer
A family $\mathcal{A} \subseteq[n]$ is intersecting if the intersection of every two members of \mathcal{A} is nonempty; it is t-intersecting if such an intersection is of size at least t. For fixed k and $A \subset[n]$ the principal family defined by A is the family of all k-subsets of $[n]$ containing A.

A family $\mathcal{A} \subseteq[n]$ is identified with its characteristic vector from $\{0,1\}^{n}$. A function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is dictatorship if there is $i \in[n]$ such that $f(x)=x_{i}$; it is t-umvirate if there exists a set $A \subseteq[n]$ with $|A|=t$ and $f(x)=\prod_{i \in A} x_{i}$.

For every $p \in[0,1]$ let $q=1-p$, then μ_{p} is the product measure on $\{0,1\}^{n}$ given by $\mu_{p}(x)=p^{\alpha}(x) q^{\beta}(x)$ where α is the number of 1 s of x and β is the number of 0 s of x.

Theorem (Erdős-Ko-Rado). Let $k \leq n / 2$ and let $\mathcal{A} \subseteq\binom{[n]}{k}$ be an intersecting family. Then $|\mathcal{A}| \leq\binom{ n-1}{k-1}$. Furthermore, if $k<n / 2$ then equality is attained if and only if \mathcal{A} is a principal family defined by some $\{i\}$.

Theorem (Fishburn \& al). Let $0 \leq p \leq 1 / 2$ and let $\mathcal{A} \subset\{0,1\}^{n}$ be an intersecting family. Then $\mu_{p} \leq p$. Furthermore, if $0<p<1 / 2$ then equality is attained if and only if \mathcal{A} is dictatorship.

Theorem 1. Let $0<p<1 / 2$ and let $\mathcal{A} \subset\{0,1\}^{n}$ be an intersecting family. Then

1. $\mu_{p}(\mathcal{A}) \leq p$.
2. Uniqueness: If $\mu_{p}(\mathcal{A})=p$ then \mathcal{A} is dictatorship.
3. Stability: If $\mu_{p}(\mathcal{A})=p-\varepsilon$ then there exists dictatorship \mathcal{B} such that $\mu_{p}(\mathcal{A} \triangle \mathcal{B})=c \varepsilon$ where $c=c(p)$.
Corollary 2. Let $0<\zeta$, let $\zeta n<k<\left(\frac{1}{2}-\zeta\right) n$ and let $\mathcal{A} \subseteq\binom{[n]}{k}$ be an intersecting family. If $|A| \geq(1-\varepsilon)\binom{n-1}{k-1}$ then there exists a principal family $\mathcal{B} \subset\binom{[n]}{k}$ defined by some $\{i\}$ such that $|\mathcal{A} \backslash \mathcal{B}|<c \varepsilon\binom{n}{k}$ where $c=c(\zeta)$.

Few more definitions:

$$
\begin{gathered}
M(n, k, t)=\max \left\{|\mathcal{A}|: \mathcal{A} \subset\binom{[n]}{k}, \mathcal{A} \text { is } t \text {-intersecting }\right\} . \\
I(n, k, t, r)=\left\{A \in\binom{[n]}{k},|A \cap[t+2 r]| \geq t+r\right\} .
\end{gathered}
$$

$I(n, k, t, r)$ is a t-intersecting family.
Theorem (Alshwede-Khachatrian). $M(n, k, l)=\max _{r}\{|I(n, k, t, r)|\}$.

Theorem (Dinur-Safra). Let $0<p<\frac{1}{2}$, let $1 \leq t$ and let $\mathcal{A} \subseteq\{0,1\}^{n}$ be a t-intersecting family. Then $\mu_{p}(\mathcal{A}) \leq \max _{r} \mu_{p}\left(\left\{x: \sum_{i=1}^{k+2 r} x_{i} \geq t+r\right\}\right)$.

Theorem 3. Let $t \geq 1$ be an integer, let $0<p<\frac{1}{t+1}$ and let $\mathcal{A} \subset\{0,1\}^{n}$ be a t-intersecting family. Then

1. $\mu_{p}(\mathcal{A}) \leq p^{t}$.
2. Uniqueness: If $\mu_{p}(\mathcal{A})=p^{t}$ then \mathcal{A} is t-umvirate.
3. Stability: If $\mu_{p}(\mathcal{A})=p^{t}-\varepsilon$ then there exists t-umvirate \mathcal{B} such that $\mu_{p}(\mathcal{A} \triangle \mathcal{B})=c \varepsilon$ where $c=c(p)$.

Corollary 4. Let $t \geq 1$ be an integer, let $0<\zeta, \zeta n<k<\left(\frac{1}{t+1}-\zeta\right) n$ and let $\mathcal{A} \subset\binom{[n]}{k}$ be a t-intersecting family. If $|A| \geq(1-\varepsilon)\binom{n-t}{k-t}$ then there exists a principal family $\mathcal{B} \subset\binom{[n]}{k}$ defined by some B with $|B|=t$ such that $|\mathcal{A} \backslash \mathcal{B}|<c \varepsilon\binom{n}{k}$ where $c=c(\zeta)$.

Theorem (Hoffman). Let G be a regular graph with eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{m}$. Then

$$
\bar{\alpha}(G) \leq \frac{-\lambda_{m}}{\lambda_{1}-\lambda_{m}}
$$

where $\bar{\alpha}(G)$ is the weighted size of the largest independent set, i.e., $\bar{\alpha}(G)=\frac{\alpha(G)}{m}$.

A few important matrices

$$
A^{(1)}=\left(\begin{array}{cc}
\frac{q-p}{q} & \frac{p}{q} \\
1 & 0
\end{array}\right) \quad \text { eigenvectors: }\binom{1}{1},\binom{\sqrt{p / q}}{-\sqrt{q / p}} \quad \text { eigenvalues: } 1,-p / q
$$

2-disjointness matrices; the rows and twe columns of $B^{(3)}$ and $M^{(3)}$ are indexed with $\emptyset,\{1\},\{2\},\{1,2\},\{3\},\{1,3\},\{2,3\},\{1,2,3\}:$
$B^{(3)}=\left(\begin{array}{cccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0\end{array}\right) ; M^{(1)}=\left(\begin{array}{cc}1 & 1 \\ 1 & X\end{array}\right) ; M^{(3)}=\left(\begin{array}{cccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & X & 1 & X & 1 & X & 1 & X \\ 1 & 1 & X & X & 1 & 1 & X & X \\ 1 & X & X & X^{2} & 1 & X & X & X^{2} \\ 1 & 1 & 1 & 1 & X & X & X & X \\ 1 & X & 1 & X & X & X^{2} & X & X^{2} \\ 1 & 1 & X & X & X & X & X^{2} & X^{2} \\ 1 & X & X & X^{2} & X & X^{2} & X^{2} & X^{3}\end{array}\right) ;$
$D^{(1)}=\left(\begin{array}{cc}\frac{q-p}{q}+\frac{p}{q} X & \frac{p}{q}-\frac{p}{q} X \\ 1-X & X\end{array}\right) \quad$ eigenvectors: $\binom{1}{1},\binom{\sqrt{p / q}}{-\sqrt{q / p}} \quad$ eigenvalues: $1,-p / q(1-X / p) ;$

