On the measure of intersecting families, uniqueness and stability

Ehud Friegut

Presented by Martin Tancer

A family $\mathcal{A} \subseteq [n]$ is *intersecting* if the intersection of every two members of \mathcal{A} is nonempty; it is *t*-intersecting if such an intersection is of size at least *t*. For fixed *k* and $\mathcal{A} \subset [n]$ the *principal family defined by* \mathcal{A} is the family of all *k*-subsets of [n] containing \mathcal{A} .

A family $\mathcal{A} \subseteq [n]$ is identified with its characteristic vector from $\{0,1\}^n$. A function $f: \{0,1\}^n \to \{0,1\}$ is *dictatorship* if there is $i \in [n]$ such that $f(x) = x_i$; it is *t*-unvirate if there exists a set $A \subseteq [n]$ with |A| = t and $f(x) = \prod_{i \in A} x_i$.

For every $p \in [0,1]$ let q = 1 - p, then μ_p is the product measure on $\{0,1\}^n$ given by $\mu_p(x) = p^{\alpha}(x)q^{\beta}(x)$ where α is the number of 1s of x and β is the number of 0s of x.

Theorem (Erdős-Ko-Rado). Let $k \leq n/2$ and let $\mathcal{A} \subseteq {\binom{[n]}{k}}$ be an intersecting family. Then $|\mathcal{A}| \leq {\binom{n-1}{k-1}}$. Furthermore, if k < n/2 then equality is attained if and only if \mathcal{A} is a principal family defined by some $\{i\}$.

Theorem (Fishburn & al). Let $0 \le p \le 1/2$ and let $\mathcal{A} \subset \{0,1\}^n$ be an intersecting family. Then $\mu_p \le p$. Furthermore, if $0 then equality is attained if and only if <math>\mathcal{A}$ is dictatorship.

Theorem 1. Let $0 and let <math>\mathcal{A} \subset \{0,1\}^n$ be an intersecting family. Then

- 1. $\mu_p(\mathcal{A}) \leq p$.
- 2. Uniqueness: If $\mu_p(\mathcal{A}) = p$ then \mathcal{A} is dictatorship.
- 3. Stability: If $\mu_p(\mathcal{A}) = p \varepsilon$ then there exists dictatorship \mathcal{B} such that $\mu_p(\mathcal{A} \triangle \mathcal{B}) = c\varepsilon$ where c = c(p).

Corollary 2. Let $0 < \zeta$, let $\zeta n < k < (\frac{1}{2} - \zeta)n$ and let $\mathcal{A} \subseteq {\binom{[n]}{k}}$ be an intersecting family. If $|A| \ge (1 - \varepsilon) {\binom{n-1}{k-1}}$ then there exists a principal family $\mathcal{B} \subset {\binom{[n]}{k}}$ defined by some $\{i\}$ such that $|\mathcal{A} \setminus \mathcal{B}| < c\varepsilon {\binom{n}{k}}$ where $c = c(\zeta)$.

Few more definitions:

$$M(n,k,t) = \max\left\{ |\mathcal{A}| : \mathcal{A} \subset {\binom{[n]}{k}}, \mathcal{A} \text{ is } t\text{-intersecting} \right\}$$
$$I(n,k,t,r) = \left\{ A \in {\binom{[n]}{k}}, |A \cap [t+2r]| \ge t+r \right\}.$$

I(n, k, t, r) is a *t*-intersecting family.

Theorem (Alshwede-Khachatrian). $M(n,k,l) = \max_{r} \{ |I(n,k,t,r)| \}.$

Theorem (Dinur-Safra). Let $0 , let <math>1 \le t$ and let $\mathcal{A} \subseteq \{0,1\}^n$ be a t-intersecting family. Then $\mu_p(\mathcal{A}) \le \max_r \mu_p(\{x : \sum_{i=1}^{k+2r} x_i \ge t+r\}).$

Theorem 3. Let $t \ge 1$ be an integer, let $0 and let <math>\mathcal{A} \subset \{0,1\}^n$ be a t-intersecting family. Then

- 1. $\mu_p(\mathcal{A}) \leq p^t$.
- 2. Uniqueness: If $\mu_p(\mathcal{A}) = p^t$ then \mathcal{A} is t-unvirate.
- 3. Stability: If $\mu_p(\mathcal{A}) = p^t \varepsilon$ then there exists t-unvirate \mathcal{B} such that $\mu_p(\mathcal{A} \triangle \mathcal{B}) = c\varepsilon$ where c = c(p).

Corollary 4. Let $t \ge 1$ be an integer, let $0 < \zeta, \zeta n < k < (\frac{1}{t+1} - \zeta)n$ and let $\mathcal{A} \subset {\binom{[n]}{k}}$ be a t-intersecting family. If $|\mathcal{A}| \ge (1 - \varepsilon) {\binom{n-t}{k-t}}$ then there exists a principal family $\mathcal{B} \subset {\binom{[n]}{k}}$ defined by some B with $|\mathcal{B}| = t$ such that $|\mathcal{A} \setminus \mathcal{B}| < c\varepsilon {\binom{n}{k}}$ where $c = c(\zeta)$.

Theorem (Hoffman). Let G be a regular graph with eigenvalues $\lambda_1 \geq \cdots \geq \lambda_m$. Then

$$\bar{\alpha}(G) \le \frac{-\lambda_m}{\lambda_1 - \lambda_m}$$

where $\bar{\alpha}(G)$ is the weighted size of the largest independent set, i.e., $\bar{\alpha}(G) = \frac{\alpha(G)}{m}$.

A few important matrices

$$A^{(1)} = \begin{pmatrix} \frac{q-p}{q} & \frac{p}{q} \\ 1 & 0 \end{pmatrix} \quad \text{eigenvectors:} \quad \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} \sqrt{p/q} \\ -\sqrt{q/p} \end{pmatrix} \quad \text{eigenvalues:} \quad 1, -p/q;$$

2-disjointness matrices; the rows and twe columns of $B^{(3)}$ and $M^{(3)}$ are indexed with $\emptyset, \{1\}, \{2\}, \{1, 2\}, \{3\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}$:

$$D^{(1)} = \begin{pmatrix} \frac{q-p}{q} + \frac{p}{q}X & \frac{p}{q} - \frac{p}{q}X \\ 1 - X & X \end{pmatrix} \quad \text{eigenvectors:} \quad \begin{pmatrix} 1\\1 \end{pmatrix}, \begin{pmatrix} \sqrt{p/q} \\ -\sqrt{q/p} \end{pmatrix} \quad \text{eigenvalues:} \quad 1, -p/q(1 - X/p);$$