Large almost monochromatic subsets in hypergraphs

David Conlon, Jacob Fox and Benny Sudakov

December 10, 2009

Presented by Bernard Lidický

Notation:

$r_{k}(n, l)$: minimum size of a set N such that for every coloring of k-tuples from N by l colors exists $M \subset N$ of size n such that all k-tuples on M are colored the same
$r(H, l)$: minimum size of a set N such that for every coloring of k-tuples from N by l colors exists a monochromatic copy of H, where H is a k-uniform hypergraph
$K_{d}^{k}(n): k$-uniform hypergraph whose vertex set consists of d parts of size n and whose edges are all k-tuples with vertices in k different parts

Message:

The gap between sizes of monochromatic and almost monochromatic subsets can be large for triples. It is known that for ≥ 4 colors, the largest monochromatic subset has cardinality $\Theta(\log \log N)$, while the almost monochromatic is $\Theta(\sqrt{\log N})$ due to Theorem 1 .

Erdős doubts his conjecture that $r_{3}(n, 2)$ is close to $2^{2 c n}$ (maybe closer to $2^{c n^{2}}$).
Theorem 1. For each $\epsilon>0$ and l, there is $c=c(l, \epsilon)>0$ such that every l-coloring of the triples of an N-element set contains a subset S of size $s=c \sqrt{\log N}$ such that at least $(1-\epsilon)\binom{s}{3}$ 3 triples of S have the same color.

- corollary of the following theorem

Theorem 2. The l-color Ramsey number of the complete d-partite hypergraph $K_{d}^{3}(n)$ satisfies

$$
r\left(K_{d}^{3}(n) ; l\right) \leq 2^{l^{2 r} n^{2}},
$$

where $r=r_{2}(d-1 ; l)$.
Lemma 3. Let G be a bipartite graph with parts A and B and with at least $|A||B| / l$ edges. Then G contains a complete bipartite subgraph with one part having $a=|A| / l$ vertices from A and the other part having $b=2^{-|A|}|B|$ vertices from B.

- counting couples and pigeonhole

Lemma 4. If a graph G of order n has ϵn^{2} edges and $t<\epsilon n$, then it contains $K_{s, t}$ with $s=\epsilon^{t} n$.

- counting couples

Proof of Theorem 2

- set $r=r_{2}(d-1, l), N=2^{l^{2 r} n^{2}}$
- construct V_{1}, \ldots, V_{r+1}, each of size n such that for every $1 \leq i<j \leq r$ all triples in $V_{i} \times V_{j} \times V_{k}$, where $j<k \leq r+1$ have the same color $\chi(i, j)$
- find monochromatic subgraph of $d-1$ sets V_{i} and add V_{r+1}.

