Large almost monochromatic subsets in hypergraphs

David Conlon, Jacob Fox and Benny Sudakov

December 10, 2009

Presented by Bernard Lidický

Notation:

 $r_k(n,l)$: minimum size of a set N such that for every coloring of k-tuples from N by l colors exists $M \subset N$ of size n such that all k-tuples on M are colored the same

r(H, l): minimum size of a set N such that for every coloring of k-tuples from N by l colors exists a monochromatic copy of H, where H is a k-uniform hypergraph

 $K_d^k(n)$: k-uniform hypergraph whose vertex set consists of d parts of size n and whose edges are all k-tuples with vertices in k different parts

Message:

The gap between sizes of monochromatic and almost monochromatic subsets can be large for triples. It is known that for ≥ 4 colors, the largest monochromatic subset has cardinality $\Theta(\log \log N)$, while the almost monochromatic is $\Theta(\sqrt{\log N})$ due to Theorem 1.

Erdős doubts his conjecture that $r_3(n,2)$ is close to $2^{2^{cn}}$ (maybe closer to 2^{cn^2}).

Theorem 1. For each $\epsilon > 0$ and l, there is $c = c(l, \epsilon) > 0$ such that every *l*-coloring of the triples of an N-element set contains a subset S of size $s = c\sqrt{\log N}$ such that at least $(1 - \epsilon) {s \choose 3}$ 3 triples of S have the same color.

• corollary of the following theorem

Theorem 2. The l-color Ramsey number of the complete d-partite hypergraph $K_d^3(n)$ satisfies

$$r(K_d^3(n); l) \le 2^{l^{2r}n^2},$$

where $r = r_2(d - 1; l)$.

Lemma 3. Let G be a bipartite graph with parts A and B and with at least |A||B|/l edges. Then G contains a complete bipartite subgraph with one part having a = |A|/l vertices from A and the other part having $b = 2^{-|A|}|B|$ vertices from B.

• counting couples and pigeonhole

Lemma 4. If a graph G of order n has ϵn^2 edges and $t < \epsilon n$, then it contains $K_{s,t}$ with $s = \epsilon^t n$.

• counting couples

Proof of Theorem 2

- set $r = r_2(d-1, l), N = 2^{l^{2r}n^2}$
- construct V_1, \ldots, V_{r+1} , each of size *n* such that for every $1 \leq i < j \leq r$ all triples in $V_i \times V_j \times V_k$, where $j < k \leq r+1$ have the same color $\chi(i, j)$
- find monochromatic subgraph of d-1 sets V_i and add V_{r+1} .