A Short Proof of the Hajnal-Szemerédi Theorem on Equitable Coloring H.A. Kierstead, A.V. Kostochka presented by Ondra Suchý

Definition 1 An equitable k-coloring of a graph G = (V, E) is a proper kcoloring, for which any two color classes differ in size by at most one.

Theorem 1 If G is a graph satisfying $\Delta(G) \leq r$ then G has an equitable (r+1)-coloring.

From now on, let G be a graph with s(r+1) vertices. Take $G \cup K_p$ for a suitable $p \leq r$ to achieve this.

Definition 2 A nearly equitable (r + 1)-coloring of G is a proper coloring f, whose color classes all have size s except for one small class $V^- = V^-(f)$ with size s - 1 and one large class $V^+ = V^+(f)$ with size s + 1.

Given such a coloring f, define the auxiliary digraph H = H(G; f) as follows: The vertices of H are the color classes of f. A directed edge VW belongs to E(H) iff some vertex $y \in V$ has no neighbors in W. In this case we say that yis movable to W.

Call $W \in V(H)$ accessible, if V^- is reachable from W in H. V^- is trivially accessible. Let $\mathcal{A} = \mathcal{A}(f)$ denote the family of accessible classes, $A := \bigcup \mathcal{A}$ and $B := V(G) \setminus A$.

Let $m := |\mathcal{A}| - 1$ and q := r - m. Thus $|\mathcal{A}| = (m + 1)s - 1$ and $|\mathcal{B}| = qs + 1$.

Lemma 2 If G has a nearly equitable (r + 1)-coloring f, whose large class V^+ is accessible, then G has an equitable (r + 1)-coloring.

Definition 3 A class $V \in \mathcal{A}$ is terminal, if V^- is reachable from every class $W \in \mathcal{A} \setminus \{V\}$ in the digraph $H \setminus \{V\}$.

Every non-terminal class W partitions $\mathcal{A} \setminus \{W\}$ into two parts S_W and $T_W \neq \emptyset$, where S_W is the set of classes that can reach V^- in $H \setminus \{W\}$.

Choose a non-terminal class U so that $\mathcal{A}' := T_U \neq \emptyset$ is minimal. Then every class in \mathcal{A}' is terminal and no class in \mathcal{A}' has a vertex movable to any class in $(\mathcal{A} \setminus \mathcal{A}') \setminus \{U\}$. Set $t := |\mathcal{A}'|$ and $\mathcal{A}' := \bigcup \mathcal{A}'$.

Definition 4 Call an edge zy with $z \in W \in A'$ and $y \in B$, a solo edge if $N_W(y) = z$. The ends of solo edges are called solo vertices and vertices linked by solo edges are called special neighbors of each other. Let S_z denote the set of special neighbors of z and S^y denote the set of special neighbors of y in A'.

Lemma 3 If there exists $W \in \mathcal{A}'$ such that no solo vertex in W is movable to a class in $\mathcal{A} \setminus \{W\}$ then $q + 1 \leq t$. Furthermore, every vertex $y \in B$ is solo.

Lemma 4 If $V^+ \subseteq B$ then there exists a solo vertex $z \in W \in A'$ such that either z is movable to a class in $A \setminus \{W\}$ or z has two nonadjacent special neighbors in B.

Theorem 5 There exists an algorithm \mathcal{P}' that from input (G; f) constructs an equitable (r + 1)-coloring of G in $c(q + 1)n^3$ steps.

Theorem 6 There is an algorithm \mathcal{P} of complexity $O(n^5)$ that constructs an equitable (r+1)- coloring of any graph G satisfying $\Delta(G) \leq r$ and |G| = n.

Theorem 7 (Kierstead, Kostochka 2007) Every graph satisfying $d(x)+d(y) \le 2r+1$ for every edge xy, has an equitable (r+1)-coloring.

Conjecture 8 (Seymour '73) Every graph with minimum degree $\delta(G) \ge \frac{k}{k+1}|G|$ contains the k-th power of a hamiltonian cycle.

Proved for large graphs (in terms of k) by Komlós, Sarkozy and Szemerédi in 1998 using the Regularity Lemma, the Blow-up Lemma and the Hajnal-Szemerédi Theorem.