A Short Proof of the Hajnal-Szemerédi Theorem on Equitable Coloring
 H.A. Kierstead, A.V. Kostochka presented by Ondra Suchý

Definition 1 An equitable k-coloring of a graph $G=(V, E)$ is a proper k coloring, for which any two color classes differ in size by at most one.

Theorem 1 If G is a graph satisfying $\Delta(G) \leq r$ then G has an equitable $(r+1)$ coloring.

From now on, let G be a graph with $s(r+1)$ vertices.
Take $G \cup K_{p}$ for a suitable $p \leq r$ to achieve this.
Definition 2 A nearly equitable $(r+1)$-coloring of G is a proper coloring f, whose color classes all have size s except for one small class $V^{-}=V^{-}(f)$ with size $s-1$ and one large class $V^{+}=V^{+}(f)$ with size $s+1$.

Given such a coloring f, define the auxiliary digraph $H=H(G ; f)$ as follows: The vertices of H are the color classes of f. A directed edge $V W$ belongs to $E(H)$ iff some vertex $y \in V$ has no neighbors in W. In this case we say that y is movable to W.

Call $W \in V(H)$ accessible, if V^{-}is reachable from W in $H . V^{-}$is trivially accessible. Let $\mathcal{A}=\mathcal{A}(f)$ denote the family of accessible classes, $A:=\bigcup \mathcal{A}$ and $B:=V(G) \backslash A$.
Let $m:=|\mathcal{A}|-1$ and $q:=r-m$. Thus $|A|=(m+1) s-1$ and $|B|=q s+1$.
Lemma 2 If G has a nearly equitable $(r+1)$-coloring f, whose large class V^{+} is accessible, then G has an equitable $(r+1)$-coloring.

Definition $3 A$ class $V \in \mathcal{A}$ is terminal, if V^{-}is reachable from every class $W \in \mathcal{A} \backslash\{V\}$ in the digraph $H \backslash\{V\}$.
Every non-terminal class W partitions $\mathcal{A} \backslash\{W\}$ into two parts S_{W} and $T_{W} \neq \emptyset$, where S_{W} is the set of classes that can reach V^{-}in $H \backslash\{W\}$.

Choose a non-terminal class U so that $\mathcal{A}^{\prime}:=T_{U} \neq \emptyset$ is minimal. Then every class in \mathcal{A}^{\prime} is terminal and no class in A^{\prime} has a vertex movable to any class in $\left(\mathcal{A} \backslash \mathcal{A}^{\prime}\right) \backslash\{U\}$. Set $t:=\left|\mathcal{A}^{\prime}\right|$ and $A^{\prime}:=\bigcup \mathcal{A}^{\prime}$.

Definition 4 Call an edge zy with $z \in W \in \mathcal{A}^{\prime}$ and $y \in B$, a solo edge if $N_{W}(y)=z$. The ends of solo edges are called solo vertices and vertices linked by solo edges are called special neighbors of each other. Let S_{z} denote the set of special neighbors of z and S^{y} denote the set of special neighbors of y in A^{\prime}.

Lemma 3 If there exists $W \in \mathcal{A}^{\prime}$ such that no solo vertex in W is movable to a class in $\mathcal{A} \backslash\{W\}$ then $q+1 \leq t$. Furthermore, every vertex $y \in B$ is solo.

Lemma 4 If $V^{+} \subseteq B$ then there exists a solo vertex $z \in W \in \mathcal{A}^{\prime}$ such that either z is movable to a class in $\mathcal{A} \backslash\{W\}$ or z has two nonadjacent special neighbors in B.

Theorem 5 There exists an algorithm \mathcal{P}^{\prime} that from input ($G ; f$) constructs an equitable $(r+1)$-coloring of G in $c(q+1) n^{3}$ steps.

Theorem 6 There is an algorithm \mathcal{P} of complexity $O\left(n^{5}\right)$ that constructs an equitable $(r+1)$ - coloring of any graph G satisfying $\Delta(G) \leq r$ and $|G|=n$.

Theorem 7 (Kierstead, Kostochka 2007) Every graph satisfying $d(x)+d(y) \leq$ $2 r+1$ for every edge xy, has an equitable $(r+1)$-coloring.

Conjecture 8 (Seymour '73) Every graph with minimum degree $\delta(G) \geq \frac{k}{k+1}|G|$ contains the k-th power of a hamiltonian cycle.

Proved for large graphs (in terms of k) by Komlós, Sarkozy and Szemerédi in 1998 using the Regularity Lemma, the Blow-up Lemma and the HajnalSzemerédi Theorem.

