Poly-logarithmic independence fools AC? circuits
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Let p be a distribution on the {0,1}". We denote by E,[F] the expected value of F' on inputs
drawn according to x . For an event X, we denote by P,[X] its probability under x . If the subscript
is missing, uniform distribution is considered.

The distribution p on {0,1}" is r-independent if every restriction of u to any r coordinates is
uniform on {0, 1}".
A distribution p is said to e-fool a function F' if
[Eu[F] - E[F]| <e.

An ACP circuit is a circuit with AND, OR and NOT gates, where the fan-in of the gates is
unbounded. The depth of a circuit is the maximum number of AND/OR gates between input and
output.

Main Problem: How large does r = r(m, d, €) have to be in order for every r-independent distribution
pon {0,1}" to e-fool every function F that is computed by a depth-d ACP circuit of size < m?

Theorem L.M.J. Bazzi, Polylogarithmic independence can fool DNF formulas/:
r(m,2,e) =0 <log2 ?) .

Main Theorem: Let s > logm be any parameter, I’ be a boolean function computed by a circuit of
depth d and size m, let u be an r(s, d)-independent distribution. Then |E,[F] - E[F]| < (s, d) where

r(s,d) = 3- 6073 . (logm) @) gddH3) and  e(s,d) = 0.82° - (15m).

Corollary of Main Theorem: By taking s = 5log(15m/c) we get
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Proposition 1: Let f : R® — R be a degree-r polynomial and let x be an r-independent distribution.
Then f is completely fooled by y : E,[f] = E[f].

Lemma 2 [LMN93] (f with small ||f|[3): If F:{0,1}"— > {0,1} if a boolean function computable
by a depth-d circuit of size m, then for every ¢ there is a degree ¢ polynomial f with

I1F—fll3=2"" Z |F(z) — f(z)? < 2m-27""/%

z€{0,1}"

Lemma 3 (f with small P,[f # F]): Let v be any probability distribution of {0,1}". For a circuit of
depth d and size m computing a function F, for any s, there is a degree r = (s - log m)? polynomial
f and a depth < d + 3 boolean function &, of size O(m?r) such that

e P[5, (x) =1] <0.82°m,

e whenever &,(z) = 0 then f(z) = F(x),

e for s > logm, ||f|le < (2m)dee()=2 = (2)(slosm)=2,
Lemma 4 (F' ~ F and f' with small both P,[F" # f'] and ||F' — f'||3): Let F be computed by
a circuit of depth d and size m. Let s;,s, be two parameters with s; > logm and let p be any
probability distribution on {0,1}". Set v = 1/2(p + Ugo1y»). Let &, be the function from Lemma 3
with s = s;. Set F' = FV&,. Then there is a polynomial f’ of degree r < (s -logm)? + s,, such that

o P[F £ F'] < 2-0.82°m,

o P[F+#F]<2-082"m,

© [ /3 < 0.28% - (dm) 4 920ler sy dog s

e f'(z) = 0 whenever F'(z) =0.
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Lemma 5 (F' ~ F and f] with small E[F' — f/]): For every boolean circuit F' of depth d and size m
and any s > logm and for any probability distribution p on {0,1}" there is a boolean function F’
and a polynomial f] of degree less than r = 3 - 6043 - (log m)@FV(@+3) . d(d+3) guch that

e P[F +# F'] <e(s,d)/3,

o P,[F# F'| <e(s,d)/3,

e f/ < F'on{0,1}",

« B[F - f}] < =(s.d)/3,
for e(s,d) = 0.82° - (15m).
Lemma 6 (one-sided e-fooling): Let s > logm be any parameter, F' be a boolean function computed
by a circuit of depth d and size m, let y be an r-independent distribution where r > 3 - 609+3 .
(log m)(@+D(@+3) . gd(d+3) Thep

E,[F] > E[F] —¢(s,d)

where e(s,d) = 0.82° - (15m).

Constant Depth Circuits, Fourier Transform, and Learnability, [LMN93/

Boolean functions on n variables will be considered as real valued functions f : {0,1}" — {—1,1}.
The set of all real functions on a cube is a 2"-dimensional real vector space with scalar product defined

as (9, /) =27" Y eqoy f(@)g(x) = E[g f].

For S a subset of {1,...,n} we define xg(z1,...,2,) = [> ,cq2; is odd]. Then xg forms an
orthogonal basis of real-valued functions on a cube, so every such f =) ¢ f(S)xs, where f(S) =
(f,Xs). Orthonormality of the basis implies ||f||> = S.g f(S)?. Finally, the degree of a Boolean

function, deg(f), is the size of the largest set S such that f(.S) # 0. This equals the degree of f as a
multi-linear polynomial.

A random restriction p with parameter p is the mapping of variables to 0, 1 and *, where
probability of * is p and the probability of 0 and 1 is (1—p)/2. The function obtained from f(xy, ..., z,)
by applying a random restriction p is f,,, its variables are those z; which p(x;) = *, all other variables
set according to p .

Lemma 1 (Hastad): Let f is a CNF formula where each clause has size at most ¢. Then with
probability at lest 1 — (5pt)” can f, be expressed as a DNF formula each clause of which has size at
most s and all the clauses accept disjoint sets of inputs.

Lemma 2 (iterated Hastad): Let f be a Boolean function computed by a circuit of size m and
depth d. Then P[deg(f,) > s] < m2~° where p is a random restriction with p = 10451,

Lemma 3: Let f be a Boolean function and let S be arbitrary subset. For any B C S we have
Yecse f(BUC) =27 2 Re(0.1)5° fsecr(B)*.

Lemma 4: Let f be a Boolean function, S arbitrary subset and k an integer. Then ZA,|AOS\>k f(A)? =
ER[Z\B\>k feeer(B)?] < Ppldeg(fse_gy > k], with R a random 0-1 assignment to the variables in S°.

Lemma 5: Let f be a Boolean function,t € N,0 <p < 1.Then}’ ,, f(A)? < 2Es[ 3" ans)>pt/2 f(A)%,
where S is chosen such that each variable appears in it independently with probability p, pt > 8.

Lemma 6: Let f be a Boolean function co(rinputed by a circuit of depth d ans size m and let t be
s 1
any integer. Then Z\A|>t f(A)?<2m-27 /)20



