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Let µ be a distribution on the f0, 1gn. We denote by Eµ[F ] the expected value of F on inputs
drawn according to µ . For an event X, we denote by Pµ[X] its probability under µ . If the subscript
is missing, uniform distribution is considered.

The distribution µ on f0, 1gn is r-independent if every restriction of µ to any r coordinates is
uniform on f0, 1gr.

A distribution µ is said to ε-fool a function F ifjEµ[F ]� E[F ]j � ε.

An AC0 circuit is a circuit with AND, OR and NOT gates, where the fan-in of the gates is
unbounded. The depth of a circuit is the maximum number of AND/OR gates between input and
output.Main Problem: How large does r = r(m,d, ε) have to be in order for every r-independent distribution
µ on f0, 1gn to ε-fool every function F that is computed by a depth-d AC0 circuit of size � m?Theorem L.M.J. Bazzi, Polylogarithmic independence can fool DNF formulas] :

r(m, 2, ε) = O �log2 m

ε

�
.Main Theorem: Let s � logm be any parameter, F be a boolean function computed by a circuit of

depth d and size m, let µ be an r(s, d)-independent distribution. Then jEµ[F ]�E[F ]j � ε(s, d) where

r(s, d) = 3 � 60d+3 � (logm)(d+1)(d+3) � sd(d+3) and ε(s, d) = 0.82s � (15m).Corollary of Main Theorem: By taking s = 5 log(15m/ε) we get

r(m,d, ε) = 3 � 60d+3 � (logm)(d+1)(d+3) � �5 log 15m
ε
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=
�
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m
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.Proposition 1: Let f : Rn ! R be a degree-r polynomial and let µ be an r-independent distribution.
Then f is completely fooled by µ : Eµ[f ] = E[f ].Lemma 2 [LMN93] (f with small jjf jj22): If F : f0, 1gn� > f0, 1g if a boolean function computable
by a depth-d circuit of size m, then for every t there is a degree t polynomial f̃ withjjF � f̃ jj22 = 2−n

X
x∈{0,1}n

jF (x)� f̃(x)j2 � 2m � 2−t1/d/20.Lemma 3 (f with small Pν [f 6= F ]): Let ν be any probability distribution of f0, 1gn. For a circuit of
depth d and size m computing a function F , for any s, there is a degree r = (s � logm)d polynomial
f and a depth < d+ 3 boolean function Eν of size O(m2r) such that� Pν [Eν(x) = 1] < 0.82

sm,� whenever Eν(x) = 0 then f(x) = F (x),� for s � logm, jjf jj∞ < (2m)deg(f)−2 = (2m)(s log m)d−2.Lemma 4 (F ′ � F and f ′ with small both Pν [F
′ 6= f ′] and jjF ′ � f ′jj22): Let F be computed by

a circuit of depth d and size m. Let s1, s2 be two parameters with s1 � logm and let µ be any
probability distribution on f0, 1gn. Set ν = 1/2(µ+ U{0,1}n). Let Eν be the function from Lemma 3

with s = s1. Set F ′ = F _Eν . Then there is a polynomial f
′ of degree r � (s1 � logm)d+ s2, such that� P[F 6= F ′] < 2 � 0.82s1m,� Pµ[F 6= F ′] < 2 � 0.82s1m,� jjF ′ � f ′jj22 < 0.28s1 � (4m) + 22.9(s1·log m)d·log m−s

1/(d+3)
2 /20,� f ′(x) = 0 whenever F ′(x) = 0.



Lemma 5 (F ′ � F and f ′l with small E[F ′ � f ′l ]): For every boolean circuit F of depth d and size m
and any s � logm and for any probability distribution µ on f0, 1gn there is a boolean function F ′

and a polynomial f ′l of degree less than r = 3 � 60d+3 � (logm)(d+1)(d+3) � sd(d+3) such that� P[F 6= F ′] < ε(s, d)/3,� Pµ[F 6= F ′] < ε(s, d)/3,� f ′l � F ′ on f0, 1gn,� E[F ′ � f ′l ] < ε(s, d)/3,

for ε(s, d) = 0.82s � (15m).Lemma 6 (one-sided ε-fooling): Let s � logm be any parameter, F be a boolean function computed
by a circuit of depth d and size m, let µ be an r-independent distribution where r � 3 � 60d+3 �
(logm)(d+1)(d+3) � sd(d+3). Then Eµ[F ] > E[F ]� ε(s, d)

where ε(s, d) = 0.82s � (15m).
Constant Depth Ciruits, Fourier Transform, and Learnability, [LMN93]

Boolean functions on n variables will be considered as real valued functions f : f0, 1gn ! f�1, 1g.
The set of all real functions on a cube is a 2n-dimensional real vector space with scalar product defined
as hg, fi = 2−n

P
x∈{0,1}m f(x)g(x) = E[gf ].

For S a subset of f1, . . . , ng we define χS(x1, . . . , xn) = [
P

i∈S xi is odd]. Then χS forms an

orthogonal basis of real-valued functions on a cube, so every such f =
P

S f̃(S)χS, where f̃(S) =hf, χsi. Orthonormality of the basis implies jjf jj2 = PS f̃(S)2. Finally, the degree of a Boolean

function, deg(f), is the size of the largest set S such that f̃(S) 6= 0. This equals the degree of f as a
multi-linear polynomial.

A random restriction ρ with parameter p is the mapping of variables to 0, 1 and *, where
probability of * is p and the probability of 0 and 1 is (1�p)/2. The function obtained from f(x1, ..., xn)
by applying a random restriction ρ is fρ, its variables are those xi which ρ(xi) = �, all other variables
set according to ρ .Lemma 1 (Hastad): Let f is a CNF formula where each clause has size at most t. Then with
probability at lest 1� (5pt)s can fρ be expressed as a DNF formula each clause of which has size at
most s and all the clauses accept disjoint sets of inputs.Lemma 2 (iterated Hastad): Let f be a Boolean function computed by a circuit of size m and
depth d. Then P[deg(fρ) > s] � m2−s where ρ is a random restriction with p = 10−ds−(d−1).Lemma 3: Let f be a Boolean function and let S be arbitrary subset. For any B � S we haveP

C⊂Sc f̃(B [ C)2 = 2−|S
c|
P

R∈{0,1}Sc f̃Sc←R(B)
2.Lemma 4: Let f be a Boolean function, S arbitrary subset and k an integer. Then

P
A,|A∩S|>k f̃(A)2 =ER[

P
|B|>k f̃Sc←R(B)

2] � PR[deg(fSc←R) > k], with R a random 0-1 assignment to the variables in Sc.Lemma 5: Let f be a Boolean function, t 2 N , 0 < p < 1. Then
P
|A|>t f̃(A)

2 � 2ES[
P
|A∩S|>pt/2 f̃(A)2],

where S is chosen such that each variable appears in it independently with probability p, pt > 8.Lemma 6: Let f be a Boolean function computed by a circuit of depth d ans size m and let t be
any integer. Then

P
|A|>t f̃(A)

2 � 2m � 2−t1/d/20.


