Poly-logarithmic independence fools AC^{0} circuits
 Mark Braverman

Let μ be a distribution on the $\{0,1\}^{n}$. We denote by $\mathbf{E}_{\mu}[F]$ the expected value of F on inputs drawn according to μ. For an event X, we denote by $\mathbf{P}_{\mu}[X]$ its probability under μ. If the subscript is missing, uniform distribution is considered.

The distribution μ on $\{0,1\}^{n}$ is r-independent if every restriction of μ to any r coordinates is uniform on $\{0,1\}^{r}$.

A distribution μ is said to ε-fool a function F if

$$
\left|\mathbf{E}_{\mu}[F]-\mathbf{E}[F]\right| \leq \varepsilon .
$$

An $A C^{0}$ circuit is a circuit with AND, OR and NOT gates, where the fan-in of the gates is unbounded. The depth of a circuit is the maximum number of AND/OR gates between input and output.
Main Problem: How large does $r=r(m, d, \varepsilon)$ have to be in order for every r-independent distribution μ on $\{0,1\}^{n}$ to ε-fool every function F that is computed by a depth- $d \mathrm{AC}^{0}$ circuit of size $\leq m$?
Theorem L.M.J. Bazzi, Polylogarithmic independence can fool DNF formulas]:

$$
r(m, 2, \varepsilon)=\mathcal{O}\left(\log ^{2} \frac{m}{\varepsilon}\right)
$$

Main Theorem: Let $s \geq \log m$ be any parameter, F be a boolean function computed by a circuit of depth d and size m, let μ be an $r(s, d)$-independent distribution. Then $\left|\mathbf{E}_{\mu}[F]-\mathbf{E}[F]\right| \leq \varepsilon(s, d)$ where

$$
r(s, d)=3 \cdot 60^{d+3} \cdot(\log m)^{(d+1)(d+3)} \cdot s^{d(d+3)} \quad \text { and } \quad \varepsilon(s, d)=0.82^{s} \cdot(15 m)
$$

Corollary of Main Theorem: By taking $s=5 \log (15 m / \varepsilon)$ we get

$$
r(m, d, \varepsilon)=3 \cdot 60^{d+3} \cdot(\log m)^{(d+1)(d+3)} \cdot\left(5 \log \frac{15 m}{\varepsilon}\right)^{d(d+3)}=\left(\log \frac{m}{\varepsilon}\right)^{\mathcal{O}\left(d^{2}\right)}
$$

Proposition 1: Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a degree- r polynomial and let μ be an r-independent distribution. Then f is completely fooled by $\mu: \mathbf{E}_{\mu}[f]=\mathbf{E}[f]$.
Lemma 2 [LMN93] (f with small $\|f\|_{2}^{2}$): If $F:\{0,1\}^{n}->\{0,1\}$ if a boolean function computable by a depth- d circuit of size m, then for every t there is a degree t polynomial \tilde{f} with

$$
\|F-\tilde{f}\|_{2}^{2}=2^{-n} \sum_{x \in\{0,1\}^{n}}|F(x)-\tilde{f}(x)|^{2} \leq 2 m \cdot 2^{-t^{1 / d} / 20}
$$

Lemma 3 (f with small $\mathbf{P}_{\nu}[f \neq F]$): Let ν be any probability distribution of $\{0,1\}^{n}$. For a circuit of depth d and size m computing a function F, for any s, there is a degree $r=(s \cdot \log m)^{d}$ polynomial f and a depth $<d+3$ boolean function \mathcal{E}_{ν} of size $\mathcal{O}\left(m^{2} r\right)$ such that

- $\mathbf{P}_{\nu}\left[\mathcal{E}_{\nu}(x)=1\right]<0.82^{s} m$,
- whenever $\mathcal{E}_{\nu}(x)=0$ then $f(x)=F(x)$,
- for $s \geq \log m,\|f\|_{\infty}<(2 m)^{\operatorname{deg}(f)-2}=(2 m)^{(s \log m)^{d}-2}$.

Lemma $4\left(F^{\prime} \approx F\right.$ and f^{\prime} with small both $\mathbf{P}_{\nu}\left[F^{\prime} \neq f^{\prime}\right]$ and $\left.\left\|F^{\prime}-f^{\prime}\right\|_{2}^{2}\right)$: Let F be computed by a circuit of depth d and size m. Let s_{1}, s_{2} be two parameters with $s_{1} \geq \log m$ and let μ be any probability distribution on $\{0,1\}^{n}$. Set $\nu=1 / 2\left(\mu+\mathcal{U}_{\{0,1\}^{n}}\right)$. Let \mathcal{E}_{ν} be the function from Lemma 3 with $s=s_{1}$. Set $F^{\prime}=F \vee \mathcal{E}_{\nu}$. Then there is a polynomial f^{\prime} of degree $r \leq\left(s_{1} \cdot \log m\right)^{d}+s_{2}$, such that

- $\mathbf{P}\left[F \neq F^{\prime}\right]<2 \cdot 0.82^{s_{1}} m$,
- $\mathbf{P}_{\mu}\left[F \neq F^{\prime}\right]<2 \cdot 0.82^{s_{1}} m$,
- $\left\|F^{\prime}-f^{\prime}\right\|_{2}^{2}<0.28^{s_{1}} \cdot(4 m)+2^{2.9\left(s_{1} \cdot \log m\right)^{d} \cdot \log m-s_{2}^{1 /(d+3)} / 20}$,
- $f^{\prime}(x)=0$ whenever $F^{\prime}(x)=0$.

Lemma $5\left(F^{\prime} \approx F\right.$ and f_{l}^{\prime} with small $\left.\mathbf{E}\left[F^{\prime}-f_{l}^{\prime}\right]\right)$: For every boolean circuit F of depth d and size m and any $s \geq \log m$ and for any probability distribution μ on $\{0,1\}^{n}$ there is a boolean function F^{\prime} and a polynomial f_{l}^{\prime} of degree less than $r=3 \cdot 60^{d+3} \cdot(\log m)^{(d+1)(d+3)} \cdot s^{d(d+3)}$ such that

- $\mathbf{P}\left[F \neq F^{\prime}\right]<\varepsilon(s, d) / 3$,
- $\mathbf{P}_{\mu}\left[F \neq F^{\prime}\right]<\varepsilon(s, d) / 3$,
- $f_{l}^{\prime} \leq F^{\prime}$ on $\{0,1\}^{n}$,
- $\mathbf{E}\left[F^{\prime}-f_{l}^{\prime}\right]<\varepsilon(s, d) / 3$,
for $\varepsilon(s, d)=0.82^{s} \cdot(15 m)$.
Lemma 6 (one-sided ε-fooling): Let $s \geq \log m$ be any parameter, F be a boolean function computed by a circuit of depth d and size m, let μ be an r-independent distribution where $r \geq 3 \cdot 60^{d+3}$. $(\log m)^{(d+1)(d+3)} \cdot s^{d(d+3)}$. Then

$$
\mathbf{E}_{\mu}[F]>\mathbf{E}[F]-\varepsilon(s, d)
$$

where $\varepsilon(s, d)=0.82^{s} \cdot(15 m)$.

Constant Depth Circuits, Fourier Transform, and Learnability, [LMN93]
Boolean functions on n variables will be considered as real valued functions $f:\{0,1\}^{n} \rightarrow\{-1,1\}$. The set of all real functions on a cube is a 2^{n}-dimensional real vector space with scalar product defined as $\langle g, f\rangle=2^{-n} \sum_{x \in\{0,1\}^{m}} f(x) g(x)=\mathbf{E}[g f]$.

For S a subset of $\{1, \ldots, n\}$ we define $\chi_{S}\left(x_{1}, \ldots, x_{n}\right)=\left[\sum_{i \in S} x_{i}\right.$ is odd]. Then χ_{S} forms an orthogonal basis of real-valued functions on a cube, so every such $f=\sum_{S} \tilde{f}(S) \chi_{S}$, where $\tilde{f}(S)=$ $\left\langle f, \chi_{s}\right\rangle$. Orthonormality of the basis implies $\|f\|^{2}=\sum_{S} \tilde{f}(S)^{2}$. Finally, the degree of a Boolean function, $\operatorname{deg}(f)$, is the size of the largest set S such that $\tilde{f}(S) \neq 0$. This equals the degree of f as a multi-linear polynomial.

A random restriction ρ with parameter p is the mapping of variables to 0,1 and ${ }^{*}$, where probability of * is p and the probability of 0 and 1 is $(1-p) / 2$. The function obtained from $f\left(x_{1}, \ldots, x_{n}\right)$ by applying a random restriction ρ is f_{ρ}, its variables are those x_{i} which $\rho\left(x_{i}\right)=*$, all other variables set according to ρ.
Lemma 1 (Hastad): Let f is a CNF formula where each clause has size at most t. Then with probability at lest $1-(5 p t)^{s}$ can f_{ρ} be expressed as a DNF formula each clause of which has size at most s and all the clauses accept disjoint sets of inputs.
Lemma 2 (iterated Hastad): Let f be a Boolean function computed by a circuit of size m and depth d. Then $\mathbf{P}\left[\operatorname{deg}\left(f_{\rho}\right)>s\right] \leq m 2^{-s}$ where ρ is a random restriction with $p=10^{-d} s^{-(d-1)}$.
Lemma 3: Let f be a Boolean function and let S be arbitrary subset. For any $B \subset S$ we have $\sum_{C \subset S^{c}} \tilde{f}(B \cup C)^{2}=2^{-\left|S^{c}\right|} \sum_{R \in\{0,1\}^{S^{c}}} \tilde{f}_{S^{c} \leftarrow R}(B)^{2}$.
Lemma 4: Let f be a Boolean function, S arbitrary subset and k an integer. Then $\sum_{A,|A \cap S|>k} \tilde{f}(A)^{2}=$ $\mathbf{E}_{R}\left[\sum_{|B|>k} \tilde{f}_{S^{c} \leftarrow R}(B)^{2}\right] \leq \mathbf{P}_{R}\left[\operatorname{deg}\left(f_{\left.S^{c} \leftarrow R\right)}>k\right]\right.$, with R a random 0-1 assignment to the variables in S^{c}.
Lemma 5: Let f be a Boolean function, $t \in \mathbb{N}, 0<p<1$. Then $\sum_{|A|>t} \tilde{f}(A)^{2} \leq 2 \mathbf{E}_{S}\left[\sum_{|A \cap S|>p t / 2} \tilde{f}(A)^{2}\right]$, where S is chosen such that each variable appears in it independently with probability $p, p t>8$.
Lemma 6: Let f be a Boolean function computed by a circuit of depth d ans size m and let t be any integer. Then $\sum_{|A|>t} \tilde{f}(A)^{2} \leq 2 m \cdot 2^{-t^{1 / d} / 20}$.

