Small-size ε-Nets for Axis-Parallel Rectangles and Boxes
 Boris Aronov, Esther Ezra and Micha Sharir

Definitions

A range space $(X, \mathcal{R}): X=$ set of objects (e.g. all points in $\left.\mathbb{R}^{2}\right), \mathcal{R} \subseteq 2^{X}=$ collection of ranges (e.g. axis-parallel rectangles)

Given a range space (X, \mathcal{R}), a finite subset $P \subset X$, and a parameter $0<\varepsilon<1$, an ε-net for P and R is a subset $N \subseteq P$ with the property that any range $r \in \mathcal{R}$ with $|r \cap P| \geq \varepsilon|P|$ contains an element of N.

Known results

- for any range space (X, \mathcal{R}) with bounded VC-dimension and for any P and ε there is an ε-net of size $O\left(\frac{1}{\varepsilon} \log \frac{1}{\varepsilon}\right)$. In geometry: $X=$ points, $\mathcal{R}=$ "simple" regions (axis-parallel rectangles, fat triangles, discs ...)
- lower bounds in "geometric cases" only $\Omega\left(\frac{1}{\varepsilon}\right)$
- upper bound $O\left(\frac{1}{\varepsilon}\right)$ for half-spaces in \mathbb{R}^{2} and \mathbb{R}^{3}, discs, pseudo-discs

Main theorem

Theorem 1. For any set P of n points in the plane and a parameter $\varepsilon>0$, there exists an ε-net for P and axis-parallel rectangles, of size $O\left(\frac{1}{\varepsilon} \log \log \frac{1}{\varepsilon}\right)$.

Proof

Construction of the net N

- $r:=2 / \varepsilon, s:=c r \log \log r$, for some constant $c>1$
- construct a balanced binary tree structure \mathcal{T} over P of depth $1+\log r$
- fix a uniform random sample $R \subseteq P$, each point is taken with probability $\pi:=s / n$. Thus $\mathbf{E}[|R|]=s$.
- for each node v of \mathcal{T} we define a strip σ_{v}, a vertical line ℓ_{v}, sets $P_{v}=P \cap \sigma_{v}$ and $R_{v}:=R \cap \sigma_{v}$, and a set \mathcal{M}_{v} of maximal open R-empty axis-parallel rectangles contained in σ_{v} and attached to the "entry side" of σ_{v}
- $\left|\mathcal{M}_{v}\right|=2\left|R_{v}\right|+1$
- number of maximal R-empty rectangles for any fixed level of \mathcal{T} is $O(|R|+r)$
- for each node v of \mathcal{T} and for each $M \in \mathcal{M}_{v}$, the weight factor $t_{M}:=s \cdot \frac{|M \cap P|}{n}$. M is heavy if $t_{M} \geq s / r=c \log \log r$, i.e., if $|M \cap P| \geq n / r=\frac{\varepsilon}{2} n$.
- for each heavy M, there is a $\frac{1}{t_{M}}$-net N_{M} for $M \cap P$ of size $c^{\prime} t_{M} \log t_{M}$
- $N:=R \cup \bigcup_{M \text { heavy }} N_{M}$

N is indeed an ε-net

It suffices to show for heavy R-empty rectangles Q contained in some strip σ_{v} attached to its entry side. There is $M \in \mathcal{M}_{v}$ containing Q and $\left|Q \cap N_{M}\right| \geq 1$.

Estimating the expected size of N

$$
\mathbf{E}[|N|]=c r \log \log r+c^{\prime} \cdot \mathbf{E}\left[\sum_{v} \sum_{M \in \mathcal{M}_{v}, t_{M} \geq c \log \log r} t_{M} \log t_{M}\right]
$$

- fix a level i of \mathcal{T}, define $\mathrm{CT}(R):=\bigcup_{v \text { at level } i} \mathcal{M}_{v}$, and $\mathrm{CT}_{t}(R):=\{M \in$ $\left.\mathrm{CT}(R) ; t_{M} \geq t\right\}$.
- let R^{\prime} be another random sample of P, where each point is taken with probability $\pi^{\prime}:=\pi / t$
- Exponential decay lemma:

$$
\mathbf{E}\left[\mathrm{CT}_{t}(R) \mid\right]=O\left(2^{-t}\right) \mathbf{E}\left[\mathrm{CT}\left(R^{\prime}\right) \mid\right]
$$

- $t:=c \log \log r$, so $\pi^{\prime}=r / n$
- $\left|\mathrm{CT}\left(R^{\prime}\right)\right| \leq 2\left|R^{\prime}\right|+2 r$, hence $\mathbf{E}\left[\mathrm{CT}\left(R^{\prime}\right) \mid\right]=O(r)$.
- $\mathbf{E}\left[\mathrm{CT}_{t}(R) \mid\right]=O\left(r / 2^{c \log \log r}\right)=O\left(r / \log ^{c} r\right)$, and similarly for any $j \geq t$, $\mathbf{E}\left[\mathrm{CT}_{j}(R) \mid\right]=O\left(r / 2^{j}\right)$
- contribution of the i-th level:

$$
\mathbf{E}\left[\sum_{v \text { at level } i} \sum_{M \in \mathcal{M}_{v}, t_{M} \geq t} t_{M} \log t_{M}\right]=O\left(\frac{r \log \log r \log \log \log r}{\log ^{c} r}\right)
$$

- in total

$$
\mathbf{E}[|N|]=O\left(r \log \log r+\frac{r \log \log r \log \log \log r}{\log ^{c-1} r}\right)=O(r \log \log r)
$$

