Small-size ε -Nets for Axis-Parallel Rectangles and Boxes

Boris Aronov, Esther Ezra and Micha Sharir

Definitions

A range space (X, \mathcal{R}) : $X = \text{set of objects (e.g. all points in } \mathbb{R}^2), \mathcal{R} \subseteq 2^X = \text{collection}$ of ranges (e.g. axis-parallel rectangles)

Given a range space (X, \mathcal{R}) , a finite subset $P \subset X$, and a parameter $0 < \varepsilon < 1$, an ε -net for P and R is a subset $N \subseteq P$ with the property that any range $r \in \mathcal{R}$ with $|r \cap P| \ge \varepsilon |P|$ contains an element of N.

Known results

- for any range space (X, \mathcal{R}) with bounded VC-dimension and for any P and ε there is an ε -net of size $O(\frac{1}{\varepsilon} \log \frac{1}{\varepsilon})$. In geometry: $X = \text{points}, \mathcal{R} = \text{"simple"}$ regions (axis-parallel rectangles, fat triangles, discs ...)
- lower bounds in "geometric cases" only $\Omega(\frac{1}{\epsilon})$
- upper bound $O(\frac{1}{\varepsilon})$ for half-spaces in \mathbb{R}^2 and \mathbb{R}^3 , discs, pseudo-discs

Main theorem

Theorem 1. For any set P of n points in the plane and a parameter $\varepsilon > 0$, there exists an ε -net for P and axis-parallel rectangles, of size $O(\frac{1}{\varepsilon} \log \log \frac{1}{\varepsilon})$.

Proof

Construction of the net N

- $r := 2/\varepsilon$, $s := cr \log \log r$, for some constant c > 1
- construct a balanced binary tree structure \mathcal{T} over P of depth $1 + \log r$
- fix a uniform random sample $R \subseteq P$, each point is taken with probability $\pi := s/n$. Thus $\mathbf{E}[|R|] = s$.
- for each node v of \mathcal{T} we define a strip σ_v , a vertical line ℓ_v , sets $P_v = P \cap \sigma_v$ and $R_v := R \cap \sigma_v$, and a set \mathcal{M}_v of maximal open *R*-empty axis-parallel rectangles contained in σ_v and attached to the "entry side" of σ_v
- $|\mathcal{M}_v| = 2|R_v| + 1$

- number of maximal R-empty rectangles for any fixed level of \mathcal{T} is O(|R|+r)
- for each node v of \mathcal{T} and for each $M \in \mathcal{M}_v$, the weight factor $t_M := s \cdot \frac{|M \cap P|}{n}$. M is heavy if $t_M \ge s/r = c \log \log r$, i.e., if $|M \cap P| \ge n/r = \frac{\varepsilon}{2}n$.
- for each heavy M, there is a $\frac{1}{t_M}$ -net N_M for $M \cap P$ of size $c't_M \log t_M$
- $N := R \cup \bigcup_{M \text{ heavy}} N_M$

N is indeed an $\varepsilon\text{-net}$

It suffices to show for heavy *R*-empty rectangles *Q* contained in some strip σ_v attached to its entry side. There is $M \in \mathcal{M}_v$ containing *Q* and $|Q \cap N_M| \ge 1$.

Estimating the expected size of N

$$\mathbf{E}[|N|] = cr \log \log r + c' \cdot \mathbf{E} \left[\sum_{v} \sum_{M \in \mathcal{M}_{v}, t_{M} \ge c \log \log r} t_{M} \log t_{M} \right]$$

- fix a level *i* of \mathcal{T} , define $\operatorname{CT}(R) := \bigcup_{v \text{ at level } i} \mathcal{M}_v$, and $\operatorname{CT}_t(R) := \{M \in \operatorname{CT}(R); t_M \ge t\}.$
- let R' be another random sample of P, where each point is taken with probability $\pi' := \pi/t$
- Exponential decay lemma:

$$\mathbf{E}[\mathrm{CT}_t(R)|] = O(2^{-t})\mathbf{E}[\mathrm{CT}(R')|]$$

- $t := c \log \log r$, so $\pi' = r/n$
- $|\operatorname{CT}(R')| \le 2|R'| + 2r$, hence $\mathbf{E}[\operatorname{CT}(R')|] = O(r)$.
- $\mathbf{E}[\operatorname{CT}_t(R)|] = O(r/2^{c\log\log r}) = O(r/\log^c r)$, and similarly for any $j \ge t$, $\mathbf{E}[\operatorname{CT}_j(R)|] = O(r/2^j)$
- contribution of the *i*-th level:

$$\mathbf{E}\left[\sum_{v \text{ at level } i} \sum_{M \in \mathcal{M}_{v}, t_{M} \ge t} t_{M} \log t_{M}\right] = O\left(\frac{r \log \log r \log \log \log r}{\log^{c} r}\right)$$

• in total

$$\mathbf{E}[|N|] = O\left(r\log\log r + \frac{r\log\log r\log\log\log r}{\log^{c-1} r}\right) = O(r\log\log r)$$