A bipartite strengthening of the Crossing Lemma

Jacob Fox, János Pach, Csaba D. Tóth

May 13, 2010

Presented by Marek Tesař

Crossing Lemma: Let $G=(V, E)$ be a graph with n vertices and $m \geq 4 n$ edges drawn in the plane. Then G has at least $\Omega\left(\frac{m^{3}}{n^{2}}\right)$ pairs of crossing edges.

BASIC DEFINITIONS:

crossing - pair of curves and common interior point between two arcs.
crossing number $\operatorname{cr}(G)$ - minimum number of crossings in a drawing of G
l-grid - is a pair two disjoint edge subset $E_{1}, E_{2} \subset E$ of a drawing of a graph $G=(V, E)$, such that $\left|E_{1}\right|=\left|E_{2}\right|=l$ and every edge in E_{1} crosses every edge in E_{2}
bi-clique - complete bipartite graph where vertex classes differ in size by at most 1
x-monotone curve - a curve that intersect every vertical line in at most one point
x-monotone drawing - drawing of graph G such that every edge is mapped to an x-monotone curve
bisection width $b(G)$ - the smallest nonnegative integer such that there is a partition of the vertex set $V=V_{1} \cup^{*} V_{2}$ with $\frac{1}{3}|V| \leq V_{i} \leq \frac{2}{3}|V|$ for $i=1,2$, and $\left|E\left(V_{1}, V_{2}\right)\right|=b(G)$.

THEOREMS:

Theorem 1.2 For every $k \in \mathbb{N}$, there is a constant $c_{k}>0$ such that every drawing of a graph $G=(V, E)$ with n vertices and $m \geq 3 n$ edges in which no two edges cross in more than k points contains an l-grid with $l \geq c_{k} \frac{m^{2}}{n^{2}}$.

Theorem 1.3 For every positive n, there is an x-monotone drawing of the complete bipartite graph $K_{n, n}$ such that $l=O\left(\frac{n^{2}}{\log n}\right)$ for every l-grid in the drawing.

Theorem 1.4
(i) Every drawing of a dense graph $G=(V, E)$ with n vertices and $m=\Theta\left(n^{2}\right)$ edges contains an l-grid with $l=\Omega\left(\frac{n^{2}}{\log n}\right)$.
(ii) There is a constant c such that every drawing of a graph $G=(V, E)$ with n vertices and $m \geq 3 n$ edges contains an l-grid with $l \geq \frac{m^{2}}{n^{2} \log ^{c}(m / n)}$.

Theorem 2.2 Let G be a graph with n vertices of degree $d_{1}, d_{2}, \ldots, d_{n}$. Then

$$
b(G) \leq 10 \sqrt{c r(G)}+2 \sqrt{\sum_{i=1}^{n} d_{i}^{2}}
$$

Algorithm 2.3 Decompose($\left.G^{\prime}\right)$:

1. Let $S_{0}=\left\{G^{\prime}\right\}$ and $i=0$
2. While $(3 / 2)^{i}<4 n^{2} / m$, do

Set $i:=i+1$. Let $S_{i}:=\emptyset$. For every $H \in S_{i-1}$, do

- If $|V(H)| \leq(2 / 3)^{i} 2 n$, then let $S_{i}:=S_{i} \cup\{H\}$;
- otherwise split H into induced subgraphs H_{1} and H_{2} along a bisector of size $b(H)$, and let $S_{i}:=S_{i} \cup\left\{H_{1}, H_{2}\right\}$.

3. Return S_{i}
