Point configurations that are asymmetric yet balanced Henry Cohn, Noam D. Elkies, Abhinav Kumar and Achill $Schürmann$ Presented by Josef Cibulka

- Finite set $C \subset S^{n-1}$ of points on the unit sphere in \mathbb{R}^n
- Given $x \in \mathcal{C}$ and $u \in \mathbb{R}$, let $S_u(x)$ be the set of $y \in \mathcal{C}$ such that $\langle x, y \rangle = u$.
- \bullet C is *balanced* iff it is in equilibrium under any force law that is, if $\forall x \in C \ \forall u \in \mathbb{R} \exists c \in \mathbb{R} : \sum_{y \in S_u(x)} y = cx$
- Isometry group of C... Elements are bijection $f : \mathbb{R}^n \to \mathbb{R}^n$ that preserve distances and map $\mathcal C$ on $\mathcal C$. The operation is composition.

• C is group-balanced iff $\forall x \in C$: the stabilizer of x in the isometry group fixes only multiples of x

Observation. Every group-balanced configuration is balanced.

Theorem 1. (Leech 1957) Every balanced configuration in \mathbb{R}^3 is groupbalanced.

Theorem 2. (Main theorem) There exists a configuration in \mathbb{R}^7 that is balanced, but not group-balanced.

Conjecture. Every balanced configuration in \mathbb{R}^4 is group-balanced.

• $C \subset S^{n-1}$ is a *spherical t-design* iff for every polynomial $p : \mathbb{R}^n \to \mathbb{R}$ of total degree at most t the average of p over C is the same as over S^{n-1} .

Theorem 3. If for each x in a spherical t-design $\mathcal C$

$$
|\{\langle x,y\rangle : y \in \mathcal{C}, y \neq \pm x\}| \leq t,
$$

then C is balanced.

Proof. Let $\{u_1, \ldots u_k\} = \{\langle x, y \rangle : y \in \mathcal{C}, y \neq \pm x\}.$ For each $x \in \mathcal{C}$ and $i \in [k]$ fix $y \in S^{n-1}$ orthogonal to x. Take polynomial

$$
p(z) = \langle y, z \rangle \prod_{j \in [k] \setminus \{i\}} (\langle x, z \rangle - u_j).
$$

• $p(z)$ is an odd function on cross-sections where $\langle x, z \rangle$ is constant \Rightarrow average over S^{n-1} is 0

• On C, $p(z)$ is nonzero only when $\langle x, z \rangle = u_i \Rightarrow$ sum of such z's is orthogonal to x

 \Box

Lemma 1. $\{x_1, \ldots, x_k\} \subset S^{n-1}$ is a spherical t-design iff it is a spherical $(t-1)$ -design and there exists $c \in \mathbb{R}$ such that

$$
\forall v \in S^{n-1} : \sum_{i=1}^{k} \langle x_i, v \rangle^t = c.
$$

Proof of the Main Theorem.

- simplex is a spherical 2-design
- $C_n \subset S^{n-1}$... midpoints of edges of the *n*-dim. simplex (properly scaled)
- C_n is a spherical 2-design
- $C_7' \ldots C_7$ with the midpoints of 4 disjoint edges replaced by their antipodes (the special points)
- \bullet \mathcal{C}_7 and \mathcal{C}_7' are 2-distance sets
- C_7' is a spherical 2-design

 \Rightarrow C_7 is balanced

• There are $2^4 4!$ symmetries of C_7' - we can only permute the 4 pairs of vertices corresponding to the special points and swap the vertices of each pair.

• The group of symmetries of \mathcal{C}'_7 has two orbits: the special points and the remaining ones.

• Every stabilizer of every point in the larger orbit fixes at least one more point $\Rightarrow C'_7$ is not group-balanced. □