Anti-Ramsey Property of Graphs

Tom Bohman, Alan Frieze, Oleg Pikhurko and Cliff Smyth presented by David Hartman

March 10, 2010

With two basic notion

- 1. b-bounded coloring as coloring of E(G) s.t. no color is useded more than b times and
- 2. rainbow as subset of E(G) in which each edge has different color,

the main graph property under consideration is defined:

 $G \in \mathcal{A}(b, H)$ iff every b-bounded coloring of E(G) has a rainbow copy of H The article is searching for threshold for random graph $G_{n,p}$ to have property $\mathcal{A}(b, H)$.

Other notation

$$m_{H} = \frac{e_{H} - 1}{v_{h} - 2} \qquad m_{H}^{*} = \max\{m_{H'} : H' \subseteq H, v_{H} \ge 3\}$$
$$p^{*} = \frac{1}{n^{1/m_{H}^{*}}}$$

Theorem 1. For all graphs H containing at least one cycle there exists a constant $b_0 = b_0(H)$ such that if $b \ge b_0$ then there exist $c_1 = c_1(b, H)$ and $c_2 = c_2(b, H)$ such that if $p = cn^{-1/m_H^*}$ then

$$\lim_{n \to \infty} \mathbf{Pr}(G_{n,p} \in \mathcal{A}(b,H)) = \begin{cases} 0 & \text{if } c \le c_1 \\ 1 & \text{if } c \ge c_2 \end{cases}$$

Theorem 2. Let $p = \frac{c_n}{n^{2/3}}$. Then

$$\lim_{n \to \infty} \mathbf{Pr}(G_{n,p} \in \mathcal{A}(2, K_3)) = \begin{cases} 0 & \text{if } c_n \to 0\\ 1 - \exp^{-c^6/24} & \text{if } c \to c\\ 1 & \text{if } c \to \infty \end{cases}$$

Theorem 3. Let $p = \frac{c}{n^{1/2}}$. Then

$$\lim_{n \to \infty} \mathbf{Pr}(G_{n,p} \in \mathcal{A}(3, K_3)) = \begin{cases} 1 - \exp^{-c^{10}/120} & \text{if } c < 1/\sqrt{2} \\ 1 & \text{if } c > /\sqrt{2} \end{cases}$$

Lemma 6. $K_{r+2} \in \mathcal{A}(r, K_3)$ for $r \ge 1$

$$\lim_{n \to \infty} \mathbf{Pr}(G_{n,p} \in \mathcal{A}(2, K_3) \mid G_{n,p} \text{ is } K_4 - \text{free}) = 0$$
(2)

Lemma 7. Let Γ be the triangle graph of $G_{n,p}$ with $p = c/n^{2/3}$ where c is constant. Whp every component C of Γ satisfy one of the following two conditions

- 1. G_C is isomorphic to K_4 , or
- 2. G_C is 2-degenerate.

$$\lim_{n \to \infty} \mathbf{Pr}(G_{n,p} \in \mathcal{A}(3, K_3) \mid G_{n,p} \text{ is } K_5 - \text{free}) = 0$$
(3)

Lemma 8. Whp every connected component C of Γ is safe.

Lemma 9. Whp every connected component C of Γ_H is safe.