Polynomial, rational, exponential and logarithmic functions

Denys Bulavka

Charles University

• • = • • = •

Functions

- Denote the function by the letter *f*.
- Domain of f = a set of allowed inputs for f.
- Range of f = the set of outputs when evaluated on the domain.
- Co-domain of f = a set containing the range, possibly larger.
- We write a function as $f : X \to Y$. X is the domain.
 - Y is the co-domain of f.

通 ト イ ヨ ト イ ヨ ト

• Domain of f =

イロト イ団ト イヨト イヨト

・ロト ・四ト ・ヨト ・ヨト

- Domain of $f = \mathbb{R}$.
- Range of $f = \mathbb{R}$.

< □ > < □ > < □ > < □ > < □ > < □ >

• Co-domain of f =

- Domain of $f = \mathbb{R}$.
- Range of $f = \mathbb{R}$.

< □ > < □ > < □ > < □ > < □ > < □ >

• Co-domain of $f = \mathbb{R}$.

Match linear functions

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

• Example:
$$f(x) = x^2 - 4$$
.

• Domain of f =

★ ∃ ► ★

• Example:
$$f(x) = x^2 - 4$$
.

• Domain of $f = \mathbb{R}$.

・ロト ・四ト ・ヨト ・ヨト

• Example:
$$f(x) = x^2 - 4$$
.

Domain of
$$f = \mathbb{R}$$
.

• Range of
$$f = [-4, \infty)$$
.

Co-domain of f =

• Example:
$$f(x) = x^2 - 4$$
.

- Domain of $f = \mathbb{R}$.
- Range of $f = [-4, \infty)$.

< □ > < □ > < □ > < □ > < □ > < □ >

- Co-domain of $f = \mathbb{R}$.
- We could also write $f: \mathbb{R} \to [-4, \infty).$

Match quadratic functions

• $y = x^2$ • $y = -x^2$. • $y = 2x^2 + 3$. • $y = 3x^2 - 5$. • $y = 2 - 2x^2$. • $y = -x^2 - 1$.

< □ > < □ > < □ > < □ > < □ > < □ >

Polynomials

General form of a polynomial of degree *d*:

$$p(x) = a_d x^d + a_{d-1} x^{d-1} + \dots + a_1 x + a_0$$
 with $a_d \neq 0$.

Dictionary:

- x is called variable.
- *d* is the degree of the polynomial.
- Coefficients: a_0, \ldots, a_d .
- Leading coefficient: a_d.
- Monomial: coefficient and variable $a_i x^i$.
- Polynomial: sum of monomials.
- Root: solution to p(x) = 0, that is where the graph intersects the horizontal axis.

Example

 x^2 has one root, x^2+1 has no real roots, x^2-1 has two roots

Match polynomials

- $y = x^{3} x$ • $y = -x^{3} - 5x^{2} - 2x + 8$. • $y = x^{4} - 5x^{2} + 4$.
- $y = -x^4 4x^3 + 4x^2 + 16x.$

Match polynomials (easier version)

Operations with polynomials

- Addition, subtraction, multiplication.
- Division, not necessary a polynomial.
- Example: divide $x^3 + 3x^2 4x 12$ by $x^2 + x 6$.
- Let P, Q polynomials of degree n and m, then what is the degree of P + Q, P - Q, P * Q? If P/Q is a polynomial, what is its degree?

く 同 ト く ヨ ト く ヨ ト 一

Denys Bulavka (Charles University) Polynomial, rational, exponential and logarith

Denys Bulavka (Charles University) Polynomial, rational, exponential and logarith

Denys Bulavka (Charles University) Polynomial, rational, exponential and logarith

- Domain of f = $\mathbb{R} \setminus \{0\}$
- Range of $f = \mathbb{R} \setminus \{0\}$
- Co-domain of $f = \mathbb{R}$.
- It is not correct to write: $f: \mathbb{R} \to \mathbb{R}$.

Match quotient functions

 $y = \frac{1}{x+1}$. $y = \frac{1-x^2}{x^2}$. $y = \frac{1}{x-1}$. $y = \frac{1}{1-x}$. $y = -\frac{1-x}{x}$. $y = \frac{1}{x^2-2}$

▶ ∢ ∃ ▶

- General form: $f : \mathbb{R} \to \mathbb{R}$, $f(x) = b^x$.
- Example: $f(x) = 2^x$.

• Domain of f =

・ロト ・四ト ・ヨト ・ヨト

- General form: $f : \mathbb{R} \to \mathbb{R}$, $f(x) = b^x$.
- Example: $f(x) = 2^x$.

Domain of
$$f = \mathbb{R}$$
.

• Range of f =

<ロト <問ト < 目ト < 目ト

- General form: $f : \mathbb{R} \to \mathbb{R}$, $f(x) = b^x$.
- Example: $f(x) = 2^x$.

- Domain of $f = \mathbb{R}$.
- Range of $f = (0, +\infty)$.

イロト イポト イヨト イヨト

■ Co-domain of *f* =

- General form: $f : \mathbb{R} \to \mathbb{R}$, $f(x) = b^x$.
- Example: $f(x) = 2^x$.

- Domain of $f = \mathbb{R}$.
- Range of $f = (0, +\infty)$.

< □ > < 同 > < 回 > < 回 > < 回 >

• Co-domain of $f = \mathbb{R}$.

Properties of functions

- Injective: every value in range is obtained exactly once.
- Surjective: every value of co-domain is obtained.
- Increasing/non-decreasing.
- Decreasing/non-increasing.
- Bounded from above/below.
- Even f(x) = f(-x)/ odd f(-x) = -f(x).
- Periodic f(x) = f(x + p) for some period p.

• Image: A image A image: A

Composition of functions

- $f: X \to Y$ and $g: Y \to Z$, then their composition is $h: X \to Z$ as h(x) = g(f(x)).
- We denote it as $h = g \circ f$.
- It is associative.

Example

To think:

If f and g satisfy one of the properties in the previous slide, is it true that their composition satisfy it as well?

イロト イヨト イヨト イヨト

Inverse of a function

- $f: X \to Y$ is invertible if there exists a function $g: Y \to X$ such that $(f \circ g)(y) = y \in Y$ for every y and $(g \circ f)(x) = x$ for every $x \in X$.
- We denote its inverse by $f^{-1}: Y \to X$.
- Domain of f^{-1} = range of f.
- Range of f^{-1} = domain of f.
- Not always possible: $f : \mathbb{R} \to \mathbb{R}$, f(x) = 1 or $f(x) = x^2$.

Example

- x^2 has inverse on $[0, +\infty)$ that is $\sqrt{(x)}$.
- x^3 has inverse on \mathbb{R} that is $x^{1/3}$.
- 1/x is its own inverse.

To think:

The inverse function, if exists, is it unique? If $f: X \to Y$ and $g: Y \to Z$ are invertible, is $g \circ f$ invertible?

• $f: \mathbb{R} \to \mathbb{R}$ given by f(x) = 2x + 3, then $f^{-1}(y) = \frac{y-3}{2}$.

3

イロト イヨト イヨト ・

• $f: \mathbb{R} \to \mathbb{R}$ given by f(x) = 2x + 3, then $f^{-1}(y) = \frac{y-3}{2}$.

2 $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$, then f^{-1} does not exist.

- $f: \mathbb{R} \to \mathbb{R}$ given by f(x) = 2x + 3, then $f^{-1}(y) = \frac{y-3}{2}$.
- 2 $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$, then f^{-1} does not exist.
- $f: (-\infty, 0] \rightarrow [0, +\infty)$ given by $f(x) = x^2$ then $f^{-1}(y) = -\sqrt{y}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- $f: \mathbb{R} \to \mathbb{R}$ given by f(x) = 2x + 3, then $f^{-1}(y) = \frac{y-3}{2}$.
- **2** $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$, then f^{-1} does not exist.
- 3 $f: (-\infty, 0] \rightarrow [0, +\infty)$ given by $f(x) = x^2$ then $f^{-1}(y) = -\sqrt{y}$.
- $log_2(x)$ is the inverse function of 2^x . So $2^{log_2(x)} = x$ and $log_2(2^x) = x$.

- $f: \mathbb{R} \to \mathbb{R}$ given by f(x) = 2x + 3, then $f^{-1}(y) = \frac{y-3}{2}$.
- **2** $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$, then f^{-1} does not exist.
- 3 $f: (-\infty, 0] \rightarrow [0, +\infty)$ given by $f(x) = x^2$ then $f^{-1}(y) = -\sqrt{y}$.
- $log_2(x)$ is the inverse function of 2^x . So $2^{log_2(x)} = x$ and $log_2(2^x) = x$.
- So $\ln(x)$ is the inverse function of e^x . So $e^{\ln(x)} = x$ and $\ln(e^x) = x$.

f: R → R given by f(x) = 2x + 3, then f⁻¹(y) = ^{y-3}/₂.
f: R → R given by f(x) = x², then f⁻¹ does not exist.
f: (-∞, 0] → [0, +∞) given by f(x) = x² then f⁻¹(y) = -√y.
log₂(x) is the inverse function of 2^x. So 2^{log₂(x)} = x and log₂(2^x) = x.
ln(x) is the inverse function of e^x. So e^{ln(x)} = x and ln(e^x) = x.
In general, log_b(y) is the inverse function of f(x) = b^x.

A (1) < A (1) < A (1) </p>

() How fast can you compute 2^n with *n* being a natural number?

• • = • • = •

- **(**) How fast can you compute 2^n with *n* being a natural number?
- I How many bits do you need to store n?

- I How fast can you compute 2ⁿ with n being a natural number?
- I How many bits do you need to store n?
- Alice and Bob play the following game. Alice chooses a number between 0 and n. Bob makes a guess and Alice tells Bob if the chosen number is lower or higher. How many guesses Bob has to make in order to find the number?

A B A A B A

- I How fast can you compute 2ⁿ with n being a natural number?
- I How many bits do you need to store n?
- Alice and Bob play the following game. Alice chooses a number between 0 and n. Bob makes a guess and Alice tells Bob if the chosen number is lower or higher. How many guesses Bob has to make in order to find the number?
- Say one person infects three people every day. How many infected people are there on day *n*?

• • = • • = •

- I How fast can you compute 2ⁿ with n being a natural number?
- I How many bits do you need to store n?
- Alice and Bob play the following game. Alice chooses a number between 0 and n. Bob makes a guess and Alice tells Bob if the chosen number is lower or higher. How many guesses Bob has to make in order to find the number?
- Say one person infects three people every day. How many infected people are there on day *n*?
- Say that a vaccination center can vaccine 1000 people per day, how many vaccinated people are there on day *n*?

A (1) < A (1) < A (1) </p>

- I How fast can you compute 2ⁿ with n being a natural number?
- I How many bits do you need to store n?
- Alice and Bob play the following game. Alice chooses a number between 0 and n. Bob makes a guess and Alice tells Bob if the chosen number is lower or higher. How many guesses Bob has to make in order to find the number?
- Say one person infects three people every day. How many infected people are there on day *n*?
- Say that a vaccination center can vaccine 1000 people per day, how many vaccinated people are there on day *n*?
- Say you invest 1000 USD and you get 5% interest per year. How much money will you have at the end of the *n*-th year?

・ 同 ト ・ ヨ ト ・ ヨ ト

Operations with exponential and logarithm

- Exponential: $f(x) = b^x$, b is called base b > 0 and $b \neq 1$, x is the exponent.
- Natural base, $e \approx 2.718...$ Irrational, Euler number.
- Arithmetic: $b^x * b^y = b^{x+y}$, $(b^x)^y = b^{xy} \neq b^{x^y}$. $b^0 = 1$ and $\frac{b^x}{b^y} = b^{x-y}$.

★個 ▶ ★ 国 ▶ ★ 国 ▶ …

Operations with exponential and logarithm

- Exponential: $f(x) = b^x$, b is called base b > 0 and $b \neq 1$, x is the exponent.
- Natural base, $e \approx 2.718...$ Irrational, Euler number.
- Arithmetic: $b^{x} * b^{y} = b^{x+y}$, $(b^{x})^{y} = b^{xy} \neq b^{x^{y}}$. $b^{0} = 1$ and $\frac{b^{x}}{b^{y}} = b^{x-y}$.
- Logarithm: inverse function of exponential , if $y = b^x$, then $log_b(y) = x$.
- Domain is $(0,\infty)$ and range \mathbb{R} .
- Natural logarithm: base b = e, denote $\ln x = log_e(x)$.
- Fill: $log_b(b)$, $log_b(1)$, $log_b(b^x)$, $b^{log_b(x)}$.

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣

Operations with exponential and logarithm

- Exponential: $f(x) = b^x$, b is called base b > 0 and $b \neq 1$, x is the exponent.
- Natural base, $e \approx 2.718...$ Irrational, Euler number.
- Arithmetic: $b^{x} * b^{y} = b^{x+y}$, $(b^{x})^{y} = b^{xy} \neq b^{x^{y}}$. $b^{0} = 1$ and $\frac{b^{x}}{b^{y}} = b^{x-y}$.
- Logarithm: inverse function of exponential , if $y = b^x$, then $log_b(y) = x$.
- Domain is $(0,\infty)$ and range \mathbb{R} .
- Natural logarithm: base b = e, denote $\ln x = log_e(x)$.
- Fill: $log_b(b)$, $log_b(1)$, $log_b(b^x)$, $b^{log_b(x)}$.
- Arithmetics:
 - $log_b(x * y) = log_b(x) + log_b(y)$.
 - $log_b(x/y) = log_b(x) log_b(y)$.
 - $log_b(x^n) = nlog_b(x)$.
 - Change of basis: $log_y(x) = \frac{log_b(x)}{log_b(y)}$.

To do: verify these equalities.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Trigonometric functions

• $\sin(\alpha) = |BC|/|AB|$.

- Domain of $\sin = [0, 2\pi]$.
- Range sin = [-1, 1].
- $\cos(\alpha) = |AC|/|AB|.$
- Domain $\alpha = [0, 2\pi]$
- Range $\cos = [-1, 1]$.
- $\tan(\alpha) = |BC|/|AC|$.
- Domain tan = $[0, 2\pi] \setminus \{\pi/2, 3\pi/2\}.$

・ 同 ト ・ ヨ ト ・ ヨ ト

• Range tan $= \mathbb{R}$.

Properties of trigonometric functions

Piecewise functions

• $f: X \to Y$ and $X = X_1 \sqcup \cdots \sqcup X_d$, $g_i: X_i \to Y$ and $f(x) = g_i(x)$ if $x \in X_i$.

• Example: absolute value $f : \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = |x| = \begin{cases} x & \text{if } x \ge 0\\ -x & \text{if } x < 0. \end{cases}$$

Recursive functions

- Over the natural number.
- Sketch: $f(n+k) = f(n) + \cdots + f(n+k-1)$.
- Example: f(0) = 1 and for $n \ge 1$ set f(n) = n * f(n-1).
- Example: f(0) = 1 and for $n \ge 1$ set f(n) = 3 * f(n-1). Closed formula: $f(n) = 3^n$.
- Example: f(1) = 1, f(2) = 1, and for $n \ge 3$ set f(n) = f(n-1) + f(n-2). Closed formula: $f(n) = \frac{\phi^n (-\phi)^{-n}}{\sqrt{5}}$ where $\phi = \frac{1+\sqrt{5}}{2}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …