# Polynomial, rational, exponential and logarithmic functions 

Denys Bulavka

Charles University

## Functions



- Denote the function by the letter $f$.
- Domain of $f=$ a set of allowed inputs for $f$.
- Range of $f=$ the set of outputs when evaluated on the domain.

■ Co-domain of $f=$ a set containing the range, possibly larger.

- We write a function as $f: X \rightarrow Y$.
$X$ is the domain.
$Y$ is the co-domain of $f$.


## Linear function

■ General form: $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=m x+b$.
■ Example: $f(x)=2 x+3$.


- Domain of $f=$


## Linear function

■ General form: $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=m x+b$.
■ Example: $f(x)=2 x+3$.


■ Domain of $f=\mathbb{R}$.

- Range of $f=$


## Linear function

■ General form: $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=m x+b$.
■ Example: $f(x)=2 x+3$.


■ Domain of $f=\mathbb{R}$.

- Range of $f=\mathbb{R}$.
- Co-domain of $f=$


## Linear function

■ General form: $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=m x+b$.
■ Example: $f(x)=2 x+3$.


- Domain of $f=\mathbb{R}$.
- Range of $f=\mathbb{R}$.
- Co-domain of $f=\mathbb{R}$.


## Match linear functions

(3) $y=2-3 x$.<br>(6) $y=4$.<br>(6) $y=x+1$

a

b


C


e

f


## Quadratic function

■ General form: $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=a x^{2}+b x+c$.
■ Example: $f(x)=x^{2}-4$.


- Domain of $f=$


## Quadratic function

■ General form: $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=a x^{2}+b x+c$.

- Example: $f(x)=x^{2}-4$.


■ Domain of $f=\mathbb{R}$.

- Range of $f=$


## Quadratic function

■ General form: $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=a x^{2}+b x+c$.
■ Example: $f(x)=x^{2}-4$.


■ Domain of $f=\mathbb{R}$.

- Range of $f=$ $[-4, \infty)$.
- Co-domain of $f=$


## Quadratic function

$■$ General form: $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=a x^{2}+b x+c$.

- Example: $f(x)=x^{2}-4$.


■ Domain of $f=\mathbb{R}$.

- Range of $f=$ $[-4, \infty)$.
- Co-domain of $f=\mathbb{R}$.
- We could also write $f: \mathbb{R} \rightarrow[-4, \infty)$.


## Match quadratic functions

a
(1) $y=x^{2}$
(2) $y=-x^{2}$.
(3) $y=2 x^{2}+3$.
(4) $y=3 x^{2}-5$.
(5) $y=2-2 x^{2}$.
(6) $y=-x^{2}-1$.
d
b


C


e

f


## Polynomials

General form of a polynomial of degree $d$ :

$$
p(x)=a_{d} x^{d}+a_{d-1} x^{d-1}+\cdots+a_{1} x+a_{0} \text { with } a_{d} \neq 0 .
$$

## Dictionary:

- $x$ is called variable.
- $d$ is the degree of the polynomial.
- Coefficients: $a_{0}, \ldots, a_{d}$.

■ Leading coefficient: $a_{d}$.
■ Monomial: coefficient and variable $a_{i} x^{i}$.

- Polynomial: sum of monomials.

■ Root: solution to $p(x)=0$, that is where the graph intersects the horizontal axis.

## Example

$x^{2}$ has one root, $x^{2}+1$ has no real roots, $x^{2}-1$ has two roots

## Match polynomials

(1) $y=x^{3}-x$
(2) $y=-x^{3}-5 x^{2}-$ $2 x+8$
(3) $y=x^{4}-5 x^{2}+4$.
(9) $y=-x^{4}-4 x^{3}+$ $4 x^{2}+16 x$.
a

b

C

d


## Match polynomials (easier version)

a

b


C
d


## Operations with polynomials

- Addition, subtraction, multiplication.
- Division, not necessary a polynomial.
- Example: divide $x^{3}+3 x^{2}-4 x-12$ by $x^{2}+x-6$.

■ Let $P, Q$ polynomials of degree $n$ and $m$, then what is the degree of $P+Q, P-Q, P * Q$ ? If $P / Q$ is a polynomial, what is its degree?

## Rational functions.

■ General form: $P(x), Q(x)$ polynomials then

$$
f: \mathbb{R} \backslash\{x \in \mathbb{R}: Q(x)=0\} \rightarrow \mathbb{R}, f(x)=P(x) / Q(x)
$$

- Example: $f(x)=\frac{1}{x}$.

- Domain of $f=$


## Rational functions.

■ General form: $P(x), Q(x)$ polynomials then

$$
f: \mathbb{R} \backslash\{x \in \mathbb{R}: Q(x)=0\} \rightarrow \mathbb{R}, f(x)=P(x) / Q(x)
$$

- Example: $f(x)=\frac{1}{x}$.

- Domain of $f=$ $\mathbb{R} \backslash\{0\}$
- Range of $f=$


## Rational functions.

■ General form: $P(x), Q(x)$ polynomials then

$$
f: \mathbb{R} \backslash\{x \in \mathbb{R}: Q(x)=0\} \rightarrow \mathbb{R}, f(x)=P(x) / Q(x)
$$

- Example: $f(x)=\frac{1}{x}$.

- Domain of $f=$ $\mathbb{R} \backslash\{0\}$
- Range of $f=\mathbb{R} \backslash\{0\}$
- Co-domain of $f=$


## Rational functions.

■ General form: $P(x), Q(x)$ polynomials then

$$
f: \mathbb{R} \backslash\{x \in \mathbb{R}: Q(x)=0\} \rightarrow \mathbb{R}, f(x)=P(x) / Q(x)
$$

- Example: $f(x)=\frac{1}{x}$.

- Domain of $f=$ $\mathbb{R} \backslash\{0\}$
■ Range of $f=\mathbb{R} \backslash\{0\}$
■ Co-domain of $f=\mathbb{R}$.
■ It is not correct to write: $f: \mathbb{R} \rightarrow \mathbb{R}$.


## Match quotient functions

a
(1) $y=\frac{1}{x+1}$.
(2) $y=\frac{1-x^{2}}{x^{2}}$.
(3) $y=\frac{1}{x-1}$.
(4) $y=\frac{1}{1-x}$.
(5) $y=-\frac{1-x}{x}$.
(6) $y=\frac{1}{x^{2}-2}$
b


C

e

f


## Exponential function.

■ General form: $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=b^{x}$.
■ Example: $f(x)=2^{x}$.


- Domain of $f=$


## Exponential function.

■ General form: $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=b^{x}$.

- Example: $f(x)=2^{x}$.

- Domain of $f=\mathbb{R}$.
- Range of $f=$


## Exponential function.

■ General form: $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=b^{x}$.

- Example: $f(x)=2^{x}$.

- Domain of $f=\mathbb{R}$.
- Range of $f=$ $(0,+\infty)$.
- Co-domain of $f=$


## Exponential function.

■ General form: $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=b^{x}$.

- Example: $f(x)=2^{x}$.

- Domain of $f=\mathbb{R}$.
- Range of $f=$ $(0,+\infty)$.
■ Co-domain of $f=\mathbb{R}$.


## Properties of functions

■ Injective: every value in range is obtained exactly once.

- Surjective: every value of co-domain is obtained.
- Increasing/non-decreasing.
- Decreasing/non-increasing.
- Bounded from above/below.
- Even $f(x)=f(-x) /$ odd $f(-x)=-f(x)$.
- Periodic $f(x)=f(x+p)$ for some period $p$.


## Composition of functions

■ $f: X \rightarrow Y$ and $g: Y \rightarrow Z$, then their composition is $h: X \rightarrow Z$ as $h(x)=g(f(x))$.

- We denote it as $h=g \circ f$.
- It is associative.


## Example

■ $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x+1$.
■ $g: \mathbb{R} \rightarrow \mathbb{R}, g(x)=x^{2}$.

- $h(x)=g(f(x))=(x+1)^{2}=x^{2}+2 x+1$.
- The order is important: $f(g(x))=x^{2}+1 \neq x^{2}+2 x+1=g(f(x))$.


## To think:

If $f$ and $g$ satisfy one of the properties in the previous slide, is it true that their composition satisfy it as well?

## Inverse of a function

■ $f: X \rightarrow Y$ is invertible if there exists a function $g: Y \rightarrow X$ such that $(f \circ g)(y)=y \in Y$ for every $y$ and $(g \circ f)(x)=x$ for every $x \in X$.

- We denote its inverse by $f^{-1}: Y \rightarrow X$.
- Domain of $f^{-1}=$ range of $f$.
- Range of $f^{-1}=$ domain of $f$.

■ Not always possible: $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=1$ or $f(x)=x^{2}$.

## Example

- $x^{2}$ has inverse on $[0,+\infty)$ that is $\sqrt{(x)}$.
- $x^{3}$ has inverse on $\mathbb{R}$ that is $x^{1 / 3}$.
- $1 / x$ is its own inverse.


## To think:

The inverse function, if exists, is it unique? If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are invertible, is $g \circ f$ invertible?

## Examples of inverse function

(1) $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=2 x+3$, then $f^{-1}(y)=\frac{y-3}{2}$.

## Examples of inverse function

(1) $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=2 x+3$, then $f^{-1}(y)=\frac{y-3}{2}$.
(2) $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$, then $f^{-1}$ does not exist.

## Examples of inverse function

(1) $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=2 x+3$, then $f^{-1}(y)=\frac{y-3}{2}$.
(2) $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$, then $f^{-1}$ does not exist.
(3) $f:(-\infty, 0] \rightarrow[0,+\infty)$ given by $f(x)=x^{2}$ then $f^{-1}(y)=-\sqrt{y}$.

## Examples of inverse function

(1) $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=2 x+3$, then $f^{-1}(y)=\frac{y-3}{2}$.
(2) $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$, then $f^{-1}$ does not exist.
(3) $f:(-\infty, 0] \rightarrow[0,+\infty)$ given by $f(x)=x^{2}$ then $f^{-1}(y)=-\sqrt{y}$.
(9) $\log _{2}(x)$ is the inverse function of $2^{x}$. So $2^{\log _{2}(x)}=x$ and $\log _{2}\left(2^{x}\right)=x$.

## Examples of inverse function

(1) $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=2 x+3$, then $f^{-1}(y)=\frac{y-3}{2}$.
(2) $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$, then $f^{-1}$ does not exist.
(3) $f:(-\infty, 0] \rightarrow[0,+\infty)$ given by $f(x)=x^{2}$ then $f^{-1}(y)=-\sqrt{y}$.
(9) $\log _{2}(x)$ is the inverse function of $2^{x}$. So $2^{\log _{2}(x)}=x$ and $\log _{2}\left(2^{x}\right)=x$.
(3) $\ln (x)$ is the inverse function of $e^{x}$. So $e^{\ln (x)}=x$ and $\ln \left(e^{x}\right)=x$.

## Examples of inverse function

(1) $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=2 x+3$, then $f^{-1}(y)=\frac{y-3}{2}$.
(2) $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$, then $f^{-1}$ does not exist.
(3) $f:(-\infty, 0] \rightarrow[0,+\infty)$ given by $f(x)=x^{2}$ then $f^{-1}(y)=-\sqrt{y}$.
(9) $\log _{2}(x)$ is the inverse function of $2^{x}$. So $2^{\log _{2}(x)}=x$ and $\log _{2}\left(2^{x}\right)=x$.
(0) $\ln (x)$ is the inverse function of $e^{x}$. So $e^{\ln (x)}=x$ and $\ln \left(e^{x}\right)=x$.
(0) In general, $\log _{b}(y)$ is the inverse function of $f(x)=b^{x}$.

## More examples of exponential and logarithmic functions

(1) How fast can you compute $2^{n}$ with $n$ being a natural number?

## More examples of exponential and logarithmic functions

(1) How fast can you compute $2^{n}$ with $n$ being a natural number?
(2) How many bits do you need to store $n$ ?

## More examples of exponential and logarithmic functions

(1) How fast can you compute $2^{n}$ with $n$ being a natural number?
(2) How many bits do you need to store $n$ ?
(3) Alice and Bob play the following game. Alice chooses a number between 0 and $n$. Bob makes a guess and Alice tells Bob if the chosen number is lower or higher. How many guesses Bob has to make in order to find the number?

## More examples of exponential and logarithmic functions

(1) How fast can you compute $2^{n}$ with $n$ being a natural number?
(2) How many bits do you need to store $n$ ?
(3) Alice and Bob play the following game. Alice chooses a number between 0 and $n$. Bob makes a guess and Alice tells Bob if the chosen number is lower or higher. How many guesses Bob has to make in order to find the number?
(9) Say one person infects three people every day. How many infected people are there on day $n$ ?

## More examples of exponential and logarithmic functions

(1) How fast can you compute $2^{n}$ with $n$ being a natural number?
(2) How many bits do you need to store $n$ ?
(3) Alice and Bob play the following game. Alice chooses a number between 0 and $n$. Bob makes a guess and Alice tells Bob if the chosen number is lower or higher. How many guesses Bob has to make in order to find the number?
(9) Say one person infects three people every day. How many infected people are there on day $n$ ?
(6) Say that a vaccination center can vaccine 1000 people per day, how many vaccinated people are there on day $n$ ?

## More examples of exponential and logarithmic functions

(1) How fast can you compute $2^{n}$ with $n$ being a natural number?
(2) How many bits do you need to store $n$ ?
(3) Alice and Bob play the following game. Alice chooses a number between 0 and $n$. Bob makes a guess and Alice tells Bob if the chosen number is lower or higher. How many guesses Bob has to make in order to find the number?
(1) Say one person infects three people every day. How many infected people are there on day $n$ ?
(3) Say that a vaccination center can vaccine 1000 people per day, how many vaccinated people are there on day $n$ ?
(0) Say you invest 1000 USD and you get $5 \%$ interest per year. How much money will you have at the end of the $n$-th year?

## Operations with exponential and logarithm

■ Exponential: $f(x)=b^{x}, b$ is called base $b>0$ and $b \neq 1, x$ is the exponent.
■ Natural base, $e \approx 2.718 \ldots$. Irrational, Euler number.

- Arithmetic: $b^{x} * b^{y}=b^{x+y},\left(b^{x}\right)^{y}=b^{x y} \neq b^{x^{y}} . b^{0}=1$ and $\frac{b^{x}}{b^{y}}=b^{x-y}$.


## Operations with exponential and logarithm

- Exponential: $f(x)=b^{x}, b$ is called base $b>0$ and $b \neq 1, x$ is the exponent.
■ Natural base, $e \approx 2.718 \ldots$. Irrational, Euler number.
■ Arithmetic: $b^{x} * b^{y}=b^{x+y},\left(b^{x}\right)^{y}=b^{x y} \neq b^{x^{y}}$. $b^{0}=1$ and $\frac{b^{x}}{b^{y}}=b^{x-y}$.
- Logarithm: inverse function of exponential, if $y=b^{x}$, then $\log _{b}(y)=x$.
- Domain is $(0, \infty)$ and range $\mathbb{R}$.

■ Natural logarithm: base $b=e$, denote $\ln x=\log _{e}(x)$.

- Fill: $\log _{b}(b), \log _{b}(1), \log _{b}\left(b^{x}\right), b^{\log _{b}(x)}$.


## Operations with exponential and logarithm

- Exponential: $f(x)=b^{x}, b$ is called base $b>0$ and $b \neq 1, x$ is the exponent.
■ Natural base, $e \approx 2.718 \ldots$. Irrational, Euler number.
- Arithmetic: $b^{x} * b^{y}=b^{x+y},\left(b^{x}\right)^{y}=b^{x y} \neq b^{x^{y}} . b^{0}=1$ and $\frac{b^{x}}{b^{y}}=b^{x-y}$.
- Logarithm: inverse function of exponential, if $y=b^{x}$, then $\log _{b}(y)=x$.
- Domain is $(0, \infty)$ and range $\mathbb{R}$.

■ Natural logarithm: base $b=e$, denote $\ln x=\log _{e}(x)$.

- Fill: $\log _{b}(b), \log _{b}(1), \log _{b}\left(b^{x}\right), b^{\log _{b}(x)}$.
- Arithmetics:
- $\log _{b}(x * y)=\log _{b}(x)+\log _{b}(y)$.
- $\log _{b}(x / y)=\log _{b}(x)-\log _{b}(y)$.
- $\log _{b}\left(x^{n}\right)=n \log _{b}(x)$.
- Change of basis: $\log _{y}(x)=\frac{\log _{b}(x)}{\log _{b}(y)}$.

To do: verify these equalities.

## Trigonometric functions



- $\sin (\alpha)=|B C| /|A B|$.
- Domain of $\sin =[0,2 \pi]$.
- Range $\sin =[-1,1]$.
- $\cos (\alpha)=|A C| /|A B|$.
- Domain $\alpha=[0,2 \pi]$
- Range $\cos =[-1,1]$.
- $\tan (\alpha)=|B C| /|A C|$.
- Domain $\tan =$ $[0,2 \pi] \backslash\{\pi / 2,3 \pi / 2\}$.
- Range $\tan =\mathbb{R}$.

Properties of trigonometric functions

- $\sin (\alpha)^{2}+\cos (\alpha)^{2}=1$.
- $\sin (\alpha+\beta)=\sin (\alpha) \cos (\beta)+\sin (\beta) \cos (\alpha)$.
- $\cos (\alpha+\beta)=\cos (\alpha) \cos (\beta)-\sin (\alpha) \sin (\beta)$



## Piecewise functions

- $f: X \rightarrow Y$ and $X=X_{1} \sqcup \cdots \sqcup X_{d}, g_{i}: X_{i} \rightarrow Y$ and $f(x)=g_{i}(x)$ if $x \in X_{i}$.
- Example: absolute value $f: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
f(x)=|x|= \begin{cases}x & \text { if } x \geq 0 \\ -x & \text { if } x<0\end{cases}
$$



## Recursive functions

■ Over the natural number.
■ Sketch: $f(n+k)=f(n)+\cdots+f(n+k-1)$.
■ Example: $f(0)=1$ and for $n \geq 1$ set $f(n)=n * f(n-1)$.
■ Example: $f(0)=1$ and for $n \geq 1$ set $f(n)=3 * f(n-1)$. Closed formula: $f(n)=3^{n}$.
■ Example: $f(1)=1, f(2)=1$, and for $n \geq 3$ set $f(n)=f(n-1)+f(n-2)$. Closed formula: $f(n)=\frac{\phi^{n}-(-\phi)^{-n}}{\sqrt{5}}$ where $\phi=\frac{1+\sqrt{5}}{2}$.

