Probabilistic techniques - tutorials

Problem set \#5 - Markov chains.

Release: December 7, 2023. Hints: January 4, 2024. Deadline: January 11, 2024. Send solutions to dbulavka+pt23@kam.mff.cuni.cz.

1. By homogeneous discrete time Markov chain we mean a Markov chain X_{0}, X_{1}, \ldots such that for every n we have $\operatorname{Pr}\left[X_{n+1}=x \mid X_{n}=y\right]=\operatorname{Pr}\left[X_{n}=x \mid X_{n-1}=y\right]$.
(a) Let Y_{0}, Y_{1}, \ldots be integers chosen independently uniformly from $\{-1,0,1\}$ and let $X_{n}=\max \left\{Y_{0}, \ldots, Y_{n}\right\}$. Decide and justify whether X_{0}, X_{1}, \ldots is a homogeneous discrete time Markov chain.
(b) Let Y_{0}, Y_{1}, \ldots be integers chosen independently uniformly from $\{-1,0,1\}$ and let $X_{n}=\max \left\{Y_{n}, Y_{n-1}\right\}$. Decide and justify whether X_{0}, X_{1}, \ldots is a homogeneous discrete time Markov chain.
2. Construct satisfiable 2-SAT formulae with n variables (for arbitrary large n) such that the randomized 2-SAT algorithm from the lecture takes $\Omega\left(n^{2}\right)$ steps (in expectation) to find a satisfying assignment. (Recall that in each step the algorithm picks an arbitrary unsatisfied clause and flips one of its variables)
3. We say that a graph G is triangle 2 -colorable if there is a 2 -coloring of the vertices such that no triangle in G is monochromatic. (For example, a 3colorable graph is triangle 2-colorable.) Let G be a 3 -colorable graph. Start with $c: V(G) \rightarrow\{0,1\}$ being constant 0 , and then do the following: while there is a monochromatic triangle in G (with respect to c), pick one of its vertices at random and flip its color. Show that the expected number of steps for this process to find a suitable triangle 2-coloring is polynomial in $|V(G)|$.
4. Show that in one communicating class of a Markov chain, there cannot be a state which is recurrent and another state which is transient.
5. In a finite Markov chain show that the following holds:
(a) There is at least one recurrent state.
(b) All recurrent states are positive recurrent (i. e., the expected time until the process returns to this state is less than infinity).
6. Let X be a Poisson random variable with mean $\lambda \in \mathbb{N}$. Prove that $\operatorname{Pr}[X \geq$ $\lambda] \geq 1 / 2$.
7. Throw m balls uniformly independently into n bins, where the bins are numbered from 0 to $n-1$. We say that there is a k-gap starting at j if bins $j, j+1, \ldots, j+k-1$ are all empty.
(a) Compute the expected number of k-gaps.
(b) Prove a Chernoff-like bound for the number of k-gaps X, that is, the inequality

$$
\begin{equation*}
\operatorname{Pr}[X \geq(1+\delta) \mathbb{E}[X]] \leq e^{-c \mathbb{E}[X] \delta^{2}} \tag{4}
\end{equation*}
$$

where $0<\delta<1$ and c is a positive constant.
Information about tutorials https://kam.mff.cuni.cz/~dbulavka/teaching/ws2324/ pt.html

