Probabilistic techniques - tutorials

Problem set 3 - Problem set \#3 - Markov and Chebyshev inequalities

Release: November 9, 2023. Hints: November 23, 2023. Deadline: November

30, 2023. Send solutions to honst+pt23@iuuk.mff.cuni.cz.

1. Let $n \geq 2$ be a positive integer and $v_{1}=\left(x_{1}, y_{1}\right), \ldots, v_{n}=\left(x_{n}, y_{n}\right)$ vectors with x_{i} and y_{i} integers such that $x_{i}^{2}, y_{i}^{2} \leq \frac{1}{10000} \frac{2^{n}}{n}$. Prove that there exist two non-empty disjoint subsets $I, J \subset[n]$ such that

$$
\sum_{i \in I} v_{i}=\sum_{j \in J} v_{j}
$$

Hint: An easier instance of the problem was explained in the tutorial. In the case of dimension 2 consider a random ser I indexes from $[n]$, and X and Y are the sums of the coordinates x and y of the vectors chosen with I. Prove that there are many options for I in a square centered around $(\mathbb{E}[X], \mathbb{E}[Y])$ the same way as we did in the tutorial. However, notice that if we can pick $I \nsubseteq J$ we are done, otherwise we need to pick three sets I, J, K to workaround the case where $I \subset J$.
2. Let X denote the number of isolated vertices in $G(n, p(n))$ with $p(n)=c \frac{\ln (n)}{n}$. Show that
(a) $\lim _{n \rightarrow \infty} \operatorname{Pr}[X=0]=1$ for $c>1$.

Hint: Use Markov inequality.
(b) $\lim _{n \rightarrow \infty} \operatorname{Pr}[X \geq 1]=1$ for $0 \leq c<1$.

Hint: Use that if $\left(X_{n}\right)_{n \in \mathbb{N}}$ is a sequence of random variables such that $\lim _{n \rightarrow \infty} \frac{\operatorname{Var}\left[X_{n}\right]}{\mathbb{E}\left[X_{n}\right]^{2}}=$ 0 then $\lim _{n \rightarrow \infty} \operatorname{Pr}\left[X_{n}>0\right]=1$.
3. Let X be a non-negative integer random variable such that $\mathbb{E}\left[X^{2}\right]$ is finite and nonzero. Prove that

$$
\begin{equation*}
\operatorname{Pr}[X=0] \leq \frac{\operatorname{Var}[X]}{\mathbb{E}\left[X^{2}\right]} \tag{2}
\end{equation*}
$$

Hint: First, notice that as $\mathbb{E}\left[X^{2}\right]$ is bounded, then $\mathbb{E}[X]$ as well. Then write the definition of variance and use Cauchy-Schwarz inequality for series. This works as the $\mathbb{E}\left[X^{2}\right]$ is convergent.
4. Prove that

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left[G(n, 1 / 2) \text { has an induced cycle of lenght }>3 \log _{2} n\right]=0
$$

Remember that $\left(v_{1}, \ldots, v_{k}\right)$ is an induced cycle of length k if it satisfies that $v_{i} v_{j}$ is an edge if and only if $j=i+1 \bmod (k)$.
Hint: Let X denote the number of induced cycles of length greater than $3 \log _{2}(n)$ in $G(n, 1 / 2)$. Prove that $\lim _{n \rightarrow \infty} \mathbb{E}[X]=0$. Then apply Markov inequality to X.
5. Let X be a real random variable with $\operatorname{Var}[X]=\sigma^{2}$ and $\mathbb{E}[X]=0$. For every real number $\lambda>0$ prove the inequality

$$
\operatorname{Pr}[X \geq \lambda] \leq \frac{\sigma^{2}}{\sigma^{2}+\lambda^{2}}
$$

Hint: Assume that $\sigma \neq 0$. Consider the change of variable $Y=\frac{X}{\sigma}$ to reduce the problem to $\sigma=1$. Now you just have to prove $\operatorname{Pr}[Y \geq t] \leq \frac{1}{t^{2}+1}$ where t is such that $\sigma t=\lambda$. Pick $c>0$ and use Markov inequality on $\operatorname{Pr}\left[(Y+c)^{2} \geq(t+c)^{2}\right]$ and choose the right c.
6. Show that there is a positive constant c such that the following holds: For any n vectors $a_{1}, \ldots, a_{n} \in \mathbb{R}^{2}$ satisfying $\sum_{i=1}^{n}\left\|a_{i}\right\|^{2}=1$ and $\left\|a_{i}\right\| \leq 1 / 10$, where $\|\cdot\|$ denotes the usual Euclidean norm. If $\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$ is a $\{-1,+1\}$-random vector obtained by choosing each ϵ_{i} randomly and independently with uniform distribution, then

$$
\begin{equation*}
\operatorname{Pr}\left[\left\|\sum_{i=1}^{n} \epsilon_{i} a_{i}\right\| \leq 1 / 3\right] \geq c \tag{3}
\end{equation*}
$$

Hint: Partition $[n]$ into k parts such that each part has roughly the same square sum. Use Chebyshev for vectors, that is if $(X, Y),(E[X], E[Y])$ and $\sigma=(\sigma(X), \sigma(Y))$ are the respective random variable, expectation and standard deviation, then $\operatorname{Pr}\left[\|(X, Y)-(E[X], E[Y])\|_{2} \geq\right.$ $\lambda] \leq \frac{\|\sigma\|_{2}^{2}}{\lambda^{2}}$.
7. Prove that for every set X of at least $4 k^{2}$ distinct residue classes modulo a prime p, there is an integer a such that the set $\{a x \bmod p: x \in X\}$ intersects every interval in $\{0,1, \ldots, p-1\}$ of length at least p / k.

Hint: Partition \mathbb{Z}_{p} into $2 k$ intervals I_{j} of nearly equal size. Choose a and b randomly and independently in \mathbb{Z}_{p}, and let $z_{x}=a x+b(\bmod p)$. Show that the random variables z_{x} for $x \in X$ are pairwise independent, and apply Chebyshev to show that with positive probability at least one of them falls into each of the intervals I_{j}.

[^0]
[^0]: Information about tutorials https://kam.mff.cuni.cz/~dbulavka/teaching/ws2324/ pt.html

