Probabilistic techniques - tutorials

Problem set 3 – Problem set #3 - Markov and Chebyshev inequalities
Release: November 9, 2023. Hints: November 23, 2023. Deadline: November 30, 2023. Send solutions to honst+pt23@iuuk.mff.cuni.cz.

1. Let $n \ge 2$ be a positive integer and $v_1 = (x_1, y_1), \ldots, v_n = (x_n, y_n)$ vectors with x_i and y_i integers such that $x_i^2, y_i^2 \le \frac{1}{10000} \frac{2^n}{n}$. Prove that there exist two non-empty disjoint subsets $I, J \subset [n]$ such that

$$\sum_{i \in I} v_i = \sum_{j \in J} v_j.$$

Hint: An easier instance of the problem was explained in the tutorial. In the case of dimension 2 consider a random ser I indexes from [n], and X and Y are the sums of the coordinates x and y of the vectors chosen with I. Prove that there are many options for I in a square centered around $(\mathbb{E}[X], \mathbb{E}[Y])$ the same way as we did in the tutorial. However, notice that if we can pick $I \notin J$ we are done, otherwise we need to pick three sets I, J, K to workaround the case where $I \subset J$.

- 2. Let X denote the number of isolated vertices in G(n, p(n)) with $p(n) = c \frac{\ln(n)}{n}$. Show that
 - (a) $\lim_{n\to\infty} \Pr[X=0] = 1$ for c > 1. [1] *Hint:* Use Markov inequality.
 - (b) $\lim_{n\to\infty} \Pr[X \ge 1] = 1$ for $0 \le c < 1$. [3] *Hint:* Use that if $(X_n)_{n\in\mathbb{N}}$ is a sequence of random variables such that $\lim_{n\to\infty} \frac{\operatorname{Var}[X_n]}{\mathbb{E}[X_n]^2} = 0$ then $\lim_{n\to\infty} \Pr[X_n > 0] = 1$.
- 3. Let X be a non-negative integer random variable such that $\mathbb{E}[X^2]$ is finite and nonzero. Prove that

$$\Pr[X=0] \le \frac{\operatorname{Var}[X]}{\mathbb{E}[X^2]}.$$
[2]

Hint: First, notice that as $\mathbb{E}[X^2]$ is bounded, then $\mathbb{E}[X]$ as well. Then write the definition of variance and use Cauchy–Schwarz inequality for series. This works as the $\mathbb{E}[X^2]$ is convergent.

4. Prove that

 $\lim_{n \to \infty} \Pr[G(n, 1/2) \text{ has an induced cycle of lenght} > 3 \log_2 n] = 0.$

Remember that (v_1, \ldots, v_k) is an induced cycle of length k if it satisfies that $v_i v_j$ is an edge if and only if $j = i + 1 \mod (k)$. [3]

Hint: Let X denote the number of induced cycles of length greater than $3 \log_2(n)$ in G(n, 1/2). Prove that $\lim_{n\to\infty} \mathbb{E}[X] = 0$. Then apply Markov inequality to X.

[3]

5. Let X be a real random variable with $\operatorname{Var}[X] = \sigma^2$ and $\mathbb{E}[X] = 0$. For every real number $\lambda > 0$ prove the inequality

$$\Pr[X \ge \lambda] \le \frac{\sigma^2}{\sigma^2 + \lambda^2}.$$
[2]

[3]

Hint: Assume that $\sigma \neq 0$. Consider the change of variable $Y = \frac{X}{\sigma}$ to reduce the problem to $\sigma = 1$. Now you just have to prove $\Pr[Y \ge t] \le \frac{1}{t^2+1}$ where t is such that $\sigma t = \lambda$. Pick c > 0 and use Markov inequality on $\Pr[(Y+c)^2 \ge (t+c)^2]$ and choose the right c.

6. Show that there is a positive constant c such that the following holds: For any n vectors $a_1, \ldots, a_n \in \mathbb{R}^2$ satisfying $\sum_{i=1}^n ||a_i||^2 = 1$ and $||a_i|| \leq 1/10$, where $||\cdot||$ denotes the usual Euclidean norm. If $(\epsilon_1, \ldots, \epsilon_n)$ is a $\{-1, +1\}$ -random vector obtained by choosing each ϵ_i randomly and independently with uniform distribution, then

$$\Pr\left[\left\|\sum_{i=1}^{n} \epsilon_{i} a_{i}\right\| \le 1/3\right] \ge c.$$

Hint: Partition [n] into k parts such that each part has roughly the same square sum. Use Chebyshev for vectors, that is if (X, Y), (E[X], E[Y]) and $\sigma = (\sigma(X), \sigma(Y))$ are the respective random variable, expectation and standard deviation, then $\Pr[||(X, Y) - (E[X], E[Y])||_2 \ge \lambda] \le \frac{||\sigma||_2^2}{\lambda^2}$.

7. Prove that for every set X of at least $4k^2$ distinct residue classes modulo a prime p, there is an integer a such that the set $\{ax \mod p \colon x \in X\}$ intersects every interval in $\{0, 1, \ldots, p-1\}$ of length at least p/k. [3]

Hint: Partition \mathbb{Z}_p into 2k intervals I_j of nearly equal size. Choose a and b randomly and independently in \mathbb{Z}_p , and let $z_x = ax + b \pmod{p}$. Show that the random variables z_x for $x \in X$ are pairwise independent, and apply Chebyshev to show that with positive probability at least one of them falls into each of the intervals I_j .