Probabilistic techniques - tutorials

Problem set 1 - Basics

Release: October 5, 2023. Hints: October 19, 2023. Deadline: October 26, 2023. Send solutions to honst+pt23@kam.mff.cuni.cz.

By classical probability space we denote the probability space $\left(\Omega, 2^{\Omega}, \operatorname{Pr}\right)$ where Ω is a finite set and $\operatorname{Pr}[A]=|A| /|\Omega|$. We define $[n]=\{1, \ldots, n\}$. An n-uniform hypergraph H is a tuple (V, E) where the elements of E are subset of V of size n.

1. Consider a classical probability space on p elements with p a prime number. Let A and B be two events. Show that A and B are independent if and only if one of them is \emptyset or Ω.

Hint: Use that for a prime number p and non-zero integers a and b, if $p \mid a b$ then $p \mid a$ or $p \mid b$.
2. Let A and B be disjoint subsets of $[n]$. Compute the probability that in a random permutation of $[n]$ the elements of A are in one cycle. Compute the probability that the elements of A are in one cycle and the elements of B are in one cycle, this two cycles do not need to be the same. Are the events "The elements of A are in one cycle" and "The elements of B are in one cycle" independent?
Hint: In both cases you can count the number of cycles. For the first part take into account the following identity known as "Hockey stick identity" $\sum_{i=a}^{n}\binom{i}{a}=\binom{n+1}{a+1}$. For the second part, let $|A|=a,|B|=b$, then the number of cycles is given by

$$
\sum_{l=0}^{n-a-b}\binom{n-a-b}{l}(a+l-1)!\sum_{k=0}^{n-a-b-l}\binom{n-a-b-l}{k}(b+k-1)!(n-a-b-l-k)!.
$$

Here you have to manipulate this sum until you get something nice just in terms of a and b.
3. Prove that there exists an absolute constant $c>0$ such that for every natural number n and every $n \times n$ matrix A with pairwise distinct entries, there is a permutation of the columns of A such that no row contains an increasing subsequence of length greater than $c \sqrt{n}$.
Hint: Consider the event $B_{i}=$ "row i has and increasing subsequence of length k "and $B=$ $\cup_{i=1}^{n} B_{i}$. Now you have to upper bound $P\left[B_{i}\right]$ and use union bound to find c such that $P[B]<1$.
4. Recall that $G(n, p)$ is a random graph on n vertices such that every pair of vertices form an edge with probability p independently of every other pair. Show that

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}[G(n, 1 / 2) \text { is connected }]=1 .
$$

Hint: Let $A_{x, y}$ be the event " x and y have neither an edge nor a common neighbor". The event " G is disconnected"is contained in the union $\cup_{x, y} A_{x, y}$. Use union bound to show that in the limit $P\left[\cup_{x, y} A_{x, y}\right]$ is zero.
5. Prove that there exist constants $c_{1}, c_{2}>0$ such that for every integer n and m :
(a) If $m \geq c_{1} n^{2}$, then a random mapping $[n] \rightarrow[m]$ is injective with probability at least 0.99 .
Hint: Use union bound over the events $A_{y}=" f(x)=f\left(x^{\prime}\right)=y$ ".
(b) If $m \leq c_{2} n^{2}$, then a random mapping $[n] \rightarrow[m]$ is injective with probability at most 0.01 .
Hint: Proceed by counting the number of injective function and use the AM-GM inequality.
6. Consider the classical probability space with 8 elements. Find an example of four events A, B, C and D such that all triples are independent, but the four events are not independent.

Hint: Try using subsets of size 4.
7. Let n be a positive integer such that $n \geq 4$. Let H be an n-uniform hypergraph with $|E(H)| \leq \frac{4^{n-1}}{3^{n}}$. Prove that there is a coloring of the vertices of H by 4 colors such that in every edge all 4 colors are present. The coloring doesn't need to be proper.
Hint: Consider the event $A_{e}=" e$ is missing some color"and show that $P\left[A_{e}\right]<\frac{3^{n}}{4^{n-1}}$.

[^0]
[^0]: Information about tutorials https://kam.mff.cuni.cz/~dbulavka/teaching/ws2324/ pt.html

