Probabilistic techniques - tutorials

Problem set 1 – Basics

Release: October 5, 2023. Hints: October 19, 2023. Deadline: October 26, 2023. Send solutions to honst+pt23@kam.mff.cuni.cz.

By classical probability space we denote the probability space $(\Omega, 2^{\Omega}, \Pr)$ where Ω is a finite set and $\Pr[A] = |A|/|\Omega|$. We define $[n] = \{1, \ldots, n\}$. An *n*-uniform hypergraph *H* is a tuple (V, E) where the elements of *E* are subset of *V* of size *n*.

1. Consider a classical probability space on p elements with p a prime number. Let A and B be two events. Show that A and B are independent if and only if one of them is \emptyset or Ω . [1]

Hint: Use that for a prime number p and non-zero integers a and b, if p|ab then p|a or p|b.

2. Let A and B be disjoint subsets of [n]. Compute the probability that in a random permutation of [n] the elements of A are in one cycle. Compute the probability that the elements of A are in one cycle and the elements of B are in one cycle, this two cycles do not need to be the same. Are the events "The elements of A are in one cycle" and "The elements of B are in one cycle" [4]

Hint: In both cases you can count the number of cycles. For the first part take into account the following identity known as "Hockey stick identity" $\sum_{i=a}^{n} {i \choose a} = {n+1 \choose a+1}$. For the second part, let |A| = a, |B| = b, then the number of cycles is given by

$$\sum_{l=0}^{n-a-b} \binom{n-a-b}{l} (a+l-1)! \sum_{k=0}^{n-a-b-l} \binom{n-a-b-l}{k} (b+k-1)! (n-a-b-l-k)!.$$

Here you have to manipulate this sum until you get something nice just in terms of a and b.

3. Prove that there exists an absolute constant c > 0 such that for every natural number n and every $n \times n$ matrix A with pairwise distinct entries, there is a permutation of the columns of A such that no row contains an increasing subsequence of length greater than $c\sqrt{n}$. [4]

Hint: Consider the event $B_i =$ "row *i* has and increasing subsequence of length *k*" and $B = \bigcup_{i=1}^{n} B_i$. Now you have to upper bound $P[B_i]$ and use union bound to find *c* such that P[B] < 1.

4. Recall that G(n, p) is a random graph on n vertices such that every pair of vertices form an edge with probability p independently of every other pair. Show that

$$\lim_{n \to \infty} \Pr[G(n, 1/2) \text{ is connected}] = 1.$$

[4]

Hint: Let $A_{x,y}$ be the event "x and y have neither an edge nor a common neighbor". The event "G is disconnected" is contained in the union $\bigcup_{x,y} A_{x,y}$. Use union bound to show that in the limit $P[\bigcup_{x,y} A_{x,y}]$ is zero.

5. Prove that there exist constants $c_1, c_2 > 0$ such that for every integer n and m:

(a) If $m \ge c_1 n^2$, then a random mapping $[n] \to [m]$ is injective with probability at least 0.99. [1]

Hint: Use union bound over the events $A_y = "f(x) = f(x') = y"$.

(b) If $m \le c_2 n^2$, then a random mapping $[n] \to [m]$ is injective with probability at most 0.01. [2] *Hint:* Proceed by counting the number of injective function and use the AM-GM

Hint: Proceed by counting the number of injective function and use the AM-GM inequality.

6. Consider the classical probability space with 8 elements. Find an example of four events A, B, C and D such that all triples are independent, but the four events are not independent. [2]

Hint: Try using subsets of size 4.

7. Let *n* be a positive integer such that $n \ge 4$. Let *H* be an *n*-uniform hypergraph with $|E(H)| \le \frac{4^{n-1}}{3^n}$. Prove that there is a coloring of the vertices of *H* by 4 colors such that in every edge all 4 colors are present. The coloring doesn't need to be proper. [2]

Hint: Consider the event $A_e = e^{i}$ is missing some color" and show that $P[A_e] < \frac{3^n}{4^{n-1}}$.