Probabilistic techniques - tutorials
 Classwork 5 - Lovász local lemma and Chernoff bound

1. Prove that, for every integer $d>1$, there is a finite $c(d)$ such that the edges of any bipartite graph with maximum degree d in which every cycle has at least $c(d)$ edges can be colored by $d+1$ colors so that there are no two adjacent edges with the same color and there is no two-colored cycle.
2. Let m and k be two positive integers satisfying

$$
e(m(m-1)+1) k\left(1-\frac{1}{k}\right)^{m} \leq 1 .
$$

Then, for any set S of m real numbers, there is a k-coloring such that each translation $x+S$, for $x \in \mathbb{R}$, is multicolored. That is $c(x+S)=[k]$.
3. Let σ be a uniformly random permutation of $[n]=\{1, \ldots, n\}$. Denote $X=$ $|\{i \in[n]:(\forall j<i) \sigma(j)<\sigma(i)\}|$. Prove that for every $\epsilon>0$ it holds that

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left[(1-\epsilon) H_{n}<X<(1+\epsilon) H_{n}\right]=1
$$

where $H_{n}=\sum_{i=1}^{n} \frac{1}{i}$.

[^0]
[^0]: Information about tutorials https://kam.mff.cuni.cz/~dbulavka/teaching/ws2324/ pt.html

