Probabilistic techniques - tutorials

Classwork 4 - The second moment

1. Let $\omega(G)$ denote the size of the largest clique. The threshold function for the property $\omega(G(n, p)) \geq 4$ is $n^{-2 / 3}$.
2. Let $n \geq 3$ be a positive integer and x_{1}, \ldots, x_{n} with $x_{i}^{2} \leq \frac{1}{10000} \frac{2^{n}}{n}$ for each $i \in[n]$. Prove that there exist two non-empty disjoint subsets $I, J \subset[n]$ such that

$$
\sum_{i \in I} x_{i}=\sum_{j \in J} x_{j} .
$$

3. Show that there is a positive constant c such that the following holds: For any n real numbers a_{1}, \ldots, a_{n} satifying $\sum_{i=1}^{n} a_{i}^{2}=1$, if $\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$ is a $\{-1,+1\}$ random vector obtained by choosing each ϵ_{i} randomly and independently with uniform distribution to be either -1 or +1 , then

$$
\operatorname{Pr}\left[\left|\sum_{i=1}^{n} \epsilon_{i} a_{i}\right| \leq 1\right] \geq c
$$

4. A set of positive integers $\left\{x_{1}, \ldots, x_{n}\right\}$ is said to have distinct sums if all sums

$$
\sum_{i \in S} x_{i}, S \subseteq\{1, \ldots, n\}
$$

are distinct. Let $f(n)=$ maximal k such that there exist a set

$$
\left\{x_{1}, \ldots, x_{k}\right\} \subseteq\{1, \ldots, n\}
$$

with distinct sums. Show that

$$
\left\lfloor\log _{2}(n)\right\rfloor \leq f(n) \leq \log _{2}(n)+\frac{\log _{2}\left(\log _{2} n\right)}{2}+\mathcal{O}(1)
$$

[^0]
[^0]: Information about tutorials https://kam.mff.cuni.cz/~dbulavka/teaching/ws2324/ pt.html

