Probabilistic techniques - tutorials

Classwork 3 - The method of alternation

1. Denote by $R(\cdot, \cdot)$ the Ramsey numbers. Fix $k \in \mathbb{N}$. Prove that for any integer n, it holds that $R(k, k)>n-\binom{n}{k} 2^{1-\binom{k}{2}}$. Can you write the expression on the right hand side in terms of k ?
2. Fix a graph F and define ex (n, F) to be the maximal number of edges of an n-vertex graph that does not contain F as a subgraph. Show that for any F on $k>2$ vertices with at least $2 k-3$ edges it holds ex $(n, F)=\Omega\left(n^{3 / 2}\right)$.
3. A dominating set of an undirected graph $G=(V, E)$ is a set $U \subseteq V$ such that every vertex $v \in V \backslash U$ has at least one neighbor in U. Let $G=(V, E)$ be a graph on n vertices, with minimum degree $\delta>1$. Then G has a dominating set of at most $n \frac{1+\ln (\delta+1)}{\delta+1}$ vertices.
4. Let $G=(V, E)$ be a graph on n vertices with minimum degree $\delta>1$. Prove that there is a partition of V into two disjoint sets A and B such that $|A| \leq$ $\mathcal{O}\left(n \frac{\ln (\delta)}{\delta}\right)$ and each vertex in B has at least one neighbor in A and at least one neighbor in B.
5. Define the number $m(n)$ as follows: given any n-uniform hypergraph $H=$ (V, E) less than $m(n)$ edges, there exists a two-coloring of V such that no edge is monochromatic. Show that $m(n)=\Omega\left(2^{n}(n / \ln (n))^{1 / 2}\right)$.
[^0]
[^0]: Information about tutorials https://kam.mff.cuni.cz/~dbulavka/teaching/ws2324/ pt.html

