Solution to Problem 2.4: Assume $B=\left\{b_{1}>b_{2}>\cdots>b_{n}>3\right\}$, otherwise traslate the set, and take $c=2 b_{1}$. Taking operations modulo c we can verify that in the interval $\left[\frac{3 c}{9}, \frac{4 c}{9}\right)$ there are no four elements $b_{1}, b_{2}, b_{3}, b_{4}$ such that $b_{1}+2 b_{2}=2 b_{3}+2 b_{4} \bmod c$. To see this we notice that the left hand side, i.e. $b_{1}+2 b_{2}$, takes values in the interval $\left[0, \frac{c}{9}\right)$, while the right hand side, i.e. $2 b_{3}+2 b_{4}$, takes values in the interval $\left[\frac{c}{9}, \frac{7 c}{9}\right)$. Because this two intervals are disjoint there are not such four elements satisfying the equality. Let $x \in[0, c)$ picked uniformly at random, i.e. for any $0 \leq a<b \leq c$ we have that $\operatorname{Pr}[x \in[a, b]]=\frac{b-a}{c}$. Let $b \in B$, then

$$
\operatorname{Pr}\left[x b \in\left[\frac{3 c}{9}, \frac{4 c}{9}\right]\right] \geq \operatorname{Pr}\left[x \in \bigcup_{k=1}^{k_{b}}\left[\frac{3 c}{9 b}+\frac{k c}{b}, \frac{4 c}{9 b}+\frac{k c}{b}\right]\right]
$$

To see this let $1 \leq k \leq k_{b}$ and $x \in\left[\frac{3 c}{9 b}+\frac{k c}{b}, \frac{4 c}{9 b}+\frac{k c}{b}\right]$, then $x b \in\left[\frac{3 c}{9}+k c, \frac{4 c}{9}+k c\right]=\left[\frac{3 c}{9}, \frac{4 c}{9}\right]$ where the last equality follows from taking modulo c.

Next we verify that the intervals $\left[\frac{3 c}{9 b}+\frac{k c}{b}, \frac{4 c}{9 b}+\frac{k c}{b}\right]$ are in $[0, c)$. On the one hand $\frac{3 c}{9 b}+\frac{k c}{b}<c$ iff $k<b-1 / 3$ and $\frac{4 c}{9 b}+\frac{k c}{b}<c$ iff $k<b-4 / 9$. It is enough to take $k_{b}=b-2$. If this is the case, then $\operatorname{Pr}\left[x \in\left[\frac{3 c}{9 b}+\frac{k c}{b}, \frac{4 c}{9 b}+\frac{k c}{b}\right]\right]=\frac{1}{9 b}$.

Finally we verify that the intervals are disjoint. It is enough to see that for consecutive values of k they are disjoint, that is $\frac{4 c}{9 b}+\frac{k c}{b}<\frac{3 c}{9 b}+\frac{(k+1) c}{b}$. This happens if and only if $1 / 9 \leq 1$, which is true.

Putting it all together, we obtain that

$$
\operatorname{Pr}\left[x b \in\left[\frac{3 c}{9}, \frac{4 c}{9}\right]\right] \geq \frac{(b-2)}{9 b} \geq 1 / 9
$$

where we have used that $b \geq 3$. Now, let X_{i} be the random variable for the event $x b_{i} \in\left[\frac{3 c}{9}, \frac{4 c}{9}\right)$, and set $X=\sum_{i=1}^{n} X_{i}$. By the above computations, $E[X] \geq \frac{n}{9}$ and consequently there exists an x such that at least $n / 9$ elements land in the interval $\left[\frac{3 c}{9}, \frac{4 c}{9}\right)$.

