Probabilistic techniques - tutorials

Problem set 1 - Basics

Release: October 3rd, 2023. Hints: October 17, 2023. Deadline: October 24, 2023. Send solutions to dbulavka+pt@kam.mff.cuni.cz.

By classical probability space we denote the probability space $\left(\Omega, 2^{\Omega}, \operatorname{Pr}\right)$ where Ω is a finite set and $\operatorname{Pr}[A]=|A| /|\Omega|$. We define $[n]=\{1, \ldots, n\}$. An n-uniform hypergraph H is a tuple (V, E) where the elements of E are subset of V of size n.

1. Consider a classical probability space on p elements with p a prime number. Let A and B be two events. Show that A and B are independent if and only if one of them is \emptyset or Ω.
2. Let A and B be disjoint subsets of $[n]$. Compute the probability that in a random permutation of $[n]$ the elements of A are in one cycle. Compute the probability that the element of A are in one cycle and the element of B are in one cycle, this two cycles do not need to be the same. Are the events "The elements of A are in one cycle" and "The elements of B are in one cycle"independent?
3. Prove that there exists an absolute constant $c>0$ such that for every natural number n and every $n \times n$ matrix A with pairwise distinct entries, there is a permutation of the columns of A such that no row contains an increasing subsequence of length greater than $c \sqrt{n}$.
4. Recall that $G(n, p)$ is a random graph on n vertices such that every pair of vertices form an edge with probability p independently of every other pair. Show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{Pr}[G(n, 1 / 2) \text { is connected }]=1 \tag{4}
\end{equation*}
$$

5. Prove that there exist constants $c_{1}, c_{2}>0$ such that for every integer n and m :
(a) If $m \geq c_{1} n^{2}$, then a random mapping $[n] \rightarrow[m]$ is injective with probability at least 0.99.
(b) If $m \leq c_{2} n^{2}$, then a random mapping $[n] \rightarrow[m]$ is injective with probability at most 0.01 .
6. Consider the classical probability space with 8 elements. Find an example of four events A, B, C and D such that all triples are independent, but the four events are not independent.
7. Let n be a positive integer such that $n \geq 4$. Let H be an n-uniform hypergraph with $|E(H)| \leq \frac{4^{n-1}}{3^{n}}$. Prove that there is a coloring of the vertices of H by 4 colors such that in every edge all 4 colors are present. The coloring doesn't need to be proper.
[^0]
[^0]: Information about tutorials https://kam.mff.cuni.cz/~dbulavka/teaching/ws2223/ pt.html

