Probabilistic techniques - tutorials

Classwork 6 – Markov chains

Definition 1. Let $r_{i,j}^t = \Pr[X_t = j \text{ and } X_s \neq j \text{ for all } 0 < s < t | X_0 = i]$. A state *i* is recurrent if $\sum_t r_{i,i}^t = 1$ and it is transcient if $\sum_t r_{i,i}^t < 1$. A communicating class *C* is closed if for all $i \in C$ it holds that if *i* communicates with *j* then *j* is in *C* as well.

- 1. Classification of states.
 - (a) A state is recurrent if and only if $\sum_{n} P_{i,i}^{n} = \infty$.
 - (b) A state is recurrent if and only if $\Pr[X_n = i \text{ for infinitely many } n | X_0 = 1] = 1.$
 - (c) A state i is transient if and only if $\sum_{n} P_{i,i}^{n} < \infty$.
 - (d) A state i is transient if and only if $Pr[X_n = i \text{ for infinitely many } n | X_0 = i] = 0.$
- 2. Let i be a recurrent state and assume that i communicates with j, then j communicates with i. In particular recurrent communicating classes are closed.
- 3. Every finite closed comunicating class is recurrent.