## **Probabilistic techniques - tutorials**

Classwork 3 – The second moment

- 1. Let w(G) denote the size of the largest clique. The threshold function for the property  $w(G(n, p)) \ge 4$  is  $n^{-2/3}$ .
- 2. Let  $n \ge 3$  be a positive integer and  $x_1, \ldots, x_n$  with  $x_i$  being integers such that  $x_i^2 \le \frac{1}{10000} \frac{2^n}{n}$ . Prove that there exist two non-empty disjoint subsets  $I, J \subset [n]$  such that

$$\sum_{i \in I} x_i = \sum_{j \in J} x_j.$$

3. Show that there is a positive constant c such that the following holds: For any n real numbers  $a_1, \ldots, a_n$  satisfying  $\sum_{i=1}^n a_i^2 = 1$ , if  $(\epsilon_1, \ldots, \epsilon_n)$  is a  $\{-1, +1\}$ -random vector obtained by choosing each  $\epsilon_i$  randomly and independently with uniform distribution to be either -1 or +1, then

$$\Pr\left[\left|\sum_{i=1}^{n} \epsilon_{i} a_{i}\right| \le 1\right] \ge c.$$

4. A set of positive integers  $\{x_1, \ldots, x_n\}$  is said to have distinct sums if all sums

$$\sum_{i\in S} x_i, S \subseteq \{1,\ldots,n\}$$

are distinct. Let f(n) = maximal k such that there exist a subset  $\{x_1, \ldots, x_k\} \subseteq \{1, \ldots, n\}$  such that it has distinct sums. Show that

$$f(n) \le \log_2(n) + \frac{\log_2(\log_2 n)}{2} + \mathcal{O}(1).$$