Probabilistic techniques - tutorials

Classwork 2 - Linearity of expectation

1. Show that there is a two coloring of the edges of K_{n} with at most $\binom{n}{a} 2^{1-\binom{a}{2}}$ monochromatic K_{a}.
2. Show that there is a two coloring of edges of $K_{n, m}$ with at most $\binom{n}{a}\binom{m}{b} 2^{1-a b}$ monochromatic $K_{a, b}$.
3. Let M be an $n \times n$ matrix with entries uniformy independent chosen from $\{-1,1\}$. Determine $\mathbb{E}[\operatorname{det}(M)]$.
4. Show that every set of integers size n has a subset A of size at least $n / 3$ such that there is no triple $a_{1}, a_{2}, a_{3} \in A$ that satisfies $a_{1}+a_{2}=a_{3}$.
5. Let $n \geq 2, H=(V, E)$ an n-uniform hypergraph with $|E|=4^{n-1}$ edges. Show that there is a coloring of V by four colors such that no edge is monochromatic.
6. Show that every set of real numbers of size n has a subset A of size at least $n / 3$ such that there is no triple $a_{1}, a_{2}, a_{3} \in A$ that satisfies $a_{1}+a_{2}=a_{3}$.
7. Let F be a family of subsets of $[n]=\{1, \ldots, n\}$ and suppose that there are no $A, B \in F$ such that $A \subseteq B$. Let $\sigma \in S_{n}$ be a random permutation of [n] and consider the random variable $X=|\{i:\{\sigma(1), \ldots, \sigma(i)\} \in F\}|$. Show that $|F| \leq\binom{ n}{\lfloor n / 2\rfloor}$ using $\mathbb{E}[X]$.
[^0]
[^0]: Information about tutorials https://kam.mff.cuni.cz/~dbulavka/teaching/ws2223/ pt.html

