Probabilistic techniques - tutorials

Classwork 2 – Linearity of expectation

- 1. Show that there is a two coloring of the edges of K_n with at most $\binom{n}{a}2^{1-\binom{a}{2}}$ monochromatic K_a .
- 2. Show that there is a two coloring of edges of $K_{n,m}$ with at most $\binom{n}{a}\binom{m}{b}2^{1-ab}$ monochromatic $K_{a,b}$.
- 3. Let M be an $n \times n$ matrix with entries uniformy independent chosen from $\{-1, 1\}$. Determine $\mathbb{E}[\det(M)]$.
- 4. Show that every set of integers size n has a subset A of size at least n/3 such that there is no triple $a_1, a_2, a_3 \in A$ that satisfies $a_1 + a_2 = a_3$.
- 5. Let $n \ge 2$, H = (V, E) an n-uniform hypergraph with $|E| = 4^{n-1}$ edges. Show that there is a coloring of V by four colors such that no edge is monochromatic.
- 6. Show that every set of real numbers of size n has a subset A of size at least n/3 such that there is no triple $a_1, a_2, a_3 \in A$ that satisfies $a_1 + a_2 = a_3$.
- 7. Let F be a family of subsets of $[n] = \{1, ..., n\}$ and suppose that there are no $A, B \in F$ such that $A \subseteq B$. Let $\sigma \in S_n$ be a random permutation of [n]and consider the random variable $X = |\{i: \{\sigma(1), \ldots, \sigma(i)\} \in F\}|$. Show that $|F| \leq {n \choose |n/2|}$ using $\mathbb{E}[X]$.