Probabilistic techniques - tutorials

Classwork 1 - Basics

1. Prove that there exist constants $c_{1}, c_{2}>0$ such that for every integers n and m the following holds:
(a) If $n>c_{1} m^{2}$, then a random mapping $[n] \rightarrow[m]$ is surjective with probability at least 0.99.
(b) If $n<c_{2} m^{2}$, then a random mapping $[n] \rightarrow[m]$ is surjective with probability at most 0.01 .
2. If $\binom{n}{k}\left(1-2^{-k}\right)^{n-k}<1$, then there exist a tournament $T=(V, E)$ with $|V|=n$ that satisfies the following. For every subset $U \subset V$ of size k there exists $v \in V \backslash U$ such that $(v, u) \in E$ for all $u \in U$.
3. Find an example of three non-empty events A, B and C in classical probability space that are not independent, but it holds that $\operatorname{Pr}[A \cap B \cap C]=$ $\operatorname{Pr}[A] \operatorname{Pr}[B] \operatorname{Pr}[C]$.
4. Let $\left\{\left(A_{i}, B_{i}\right): i=1, \ldots, h\right\}$ such that $\left|A_{i}\right|=k,\left|B_{i}\right|=l, A_{i} \cap B_{i}=\emptyset$ and $A_{i} \cap B_{j} \neq \emptyset$ for $i \neq j$. Show that $h \leq\binom{ k+l}{k}$.
