Mathematics++ Problem set 2 – Fourier analysis Release: March 14th, 2023. Hints: April 4th, 2023. Deadline: April 11th, 2023. Send solutions to dbulavka+mpp@kam.mff.cuni.cz.

Theorem (Riesz-Thorin interpolation). Let $p_0, q_0, p_1, q_1 \in [1, \infty], (\frac{1}{0} = \infty)$. Let $c_0, c_1 > 0$ be real numbers. Let p_t, q_t that satisfy

$$\frac{1}{p_t} = \frac{t}{p_1} + \frac{1-t}{p_0}, \qquad \frac{1}{q_t} = \frac{t}{q_1} + \frac{1-t}{q_0}$$

for each $t \in [0, 1]$. Next, let $c_t = c_0^{1-t} c_1^t$. Let $T : \mathbb{C}^X \to \mathbb{C}^Y$ be linear and X, Y finite sets. Let's assume it satisfies $\|Tf\|_{L_{q_t}} \leq c_t \|f\|_{L_{p_t}}$ for t = 0 and t = 1. Then the same is true for all $t \in [0, 1]$.

- 1. Show that the characters are eigenvectors for the convolution operator, with any function. That is for a function f and character χ we have that $f * \chi = \lambda \cdot \chi$. Compute the eigenvalue λ of χ . [2]
- 2. Let G be an abelian group and H a subgroup of G. Let $f: G \to \mathbb{C}$ be a function and $a \in G$. Show that

$$\frac{1}{|H|} \sum_{x \in H} f(x+a) = \sum_{y \in H^{\perp}} \widehat{f}(y) \chi_y(a),$$

where $H^{\perp} = \{a \in G \colon \chi_a(x) = 1, \forall x \in H\}.$ [4]

- 3. A function $f: \{-1, 1\}^n \to \{-1, 1\}$ is monotone if we have that $f(x) \leq f(y)$ whenever $x_k \leq y_k$ is true for each k.
 - (a) Show that for any monotone function $f: \{-1, 1\}^n \to \{-1, 1\}$ we have that $\text{Inf}_i(f) = \hat{f}(\{i\})$. [3]
 - (b) Show that for *n* odd the function $f(x) = \operatorname{sgn}(\sum_i x_i)$ maximizes the total influence among monotone functions of *n* variables from $\{-1,1\}^n$ to $\{-1,1\}$. By total influence we mean $\operatorname{Inf}(f) = \sum_{i=1}^n \operatorname{Inf}_i(f)$. [3]
- 4. For p prime and $r \in \mathbb{Z}_p$, we define $\operatorname{Gau}(r) := \sum_{x \in \mathbb{Z}_p} e(rx^2/p)$ (the so-called Gaussian sum). Prove that
 - (a) $\operatorname{Gau}(rs^2) = \operatorname{Gau}(r)$ for $s \in \mathbb{Z}_p \setminus \{0\}$, [2]
 - (b) if -1 is not a quadratic residue in \mathbb{Z}_p , then $\operatorname{Gau}(-r) = -\operatorname{Gau}(r)$, [4]
 - (c) $\operatorname{Gau}(1)^2 = \pm p$ for p prime different from 2. [4]
- 5. Let $p,q \ge 1$ and let 1/p + 1/q = 1. Then for a finite group G and mapping $f \in \mathbb{C}^G$, prove
 - (a) $||f||_p \ge \|\widehat{f}\|_q$ for $p \in [1, 2]$, [2]
 - (b) $||f||_p \le \|\widehat{f}\|_q$ for $p \in [2, \infty]$. [2]
 - (c) Further, let $p, q, r \in [1, \infty]$ be such that $\frac{1}{r} = \frac{1}{p} + \frac{1}{q} 1$. Prove that for any mappings $f, g \in \mathbb{C}^G$, $||f * g||_r \le ||f||_p ||g||_q$. [4]