Mathematics++
Problem set 1 - Harmonic analysis
Release: February 21st, 2023.
Hints: March 14th, 2023.
Deadline: March 21th, 2023.
Send solutions to dbulavka+mpp@kam.mff.cuni.cz.

The box product $G \square H$ of graphs G and H is a graph whose vertex set is the cartesian product $V(G) \times V(H)$, and a pair of vertices $\left(u, u^{\prime}\right),\left(v, v^{\prime}\right) \in V(G) \times V(H)$ is an edge in $G \square H$ if either $u=v$ and $u^{\prime} v^{\prime} \in E(H)$, or $u^{\prime}=v^{\prime}$ and $u v \in E(G)$. The box product is associative.

1. Let G be a finite abelian group and let $S \subseteq G$ be a set such that $0 \notin S$ and S is symmetric (i.e., $S=-S$). The Cayley graph Cay $(G ; S)$ is the graph (G, E), where $a b \in E$ whenever $b-a \in S$. Let χ be a character of G, and let $A=\left(a_{i j}\right)$ be the adjacency matrix of $\operatorname{Cay}(G ; S)$, i.e., $a_{i j}=1$ if $i j$ is an edge and $a_{i j}=0$ otherwise.
(a) Consider a vector $x \in \mathbb{C}^{G}$ such that for $a \in G$ we have $x_{a}=\chi(a)$. Prove that x is an eigenvector of $\operatorname{Cay}(G ; S)$ (i.e., of the matrix A).
Hint: Let $A x=y$, then $y_{i}=\sum_{j \in G} a_{i, j} \chi(j)$, add and substract i in $\chi(j)$ and use the fact that χ is a group homomorphism and S is symmetric.
(b) For $i=1, \ldots, d$, let G_{i} be a group and $S_{i} \subseteq G_{i}$ a symmetric subsets such that $0 \notin S_{i}$ and let $G=\prod_{i=1}^{d} G_{i}$. Let χ_{i} be a character of G_{i} and set $x \in \mathbb{C}^{G}$ as $x_{\left(a_{1}, \ldots, a_{d}\right)}=\chi_{1}\left(a_{1}\right) \cdots \chi_{d}\left(a_{d}\right)$. Show that x is an eigenvector of $\square_{i=1}^{d} \operatorname{Cay}\left(G_{i} ; S_{i}\right)$ and compute its eigenvalue.
Hint: For each $i \in[d]$ and each $s \in S_{i}$ consider the vector $v_{s} \in G$ given by $\left(v_{s}\right)_{j}=s$ is $j=i$ and 0 otherwise and let S be the set of all such v_{s}. Show that the Cayley graph $\operatorname{Cay}(G, S)$ coincides with $\square_{i=1}^{d} \operatorname{Cay}\left(G_{i} ; S_{i}\right)$. Then use that \hat{G} is isomorphic to $\prod_{i=1}^{d} \hat{G}_{i}$ as shown in the tutorial.
(c) For n_{1}, \ldots, n_{d} positive integers, find all the eigenvalues of the graph $\square_{i}^{d} C_{n_{i}}$, where C_{n} is the cycle with n vertices.
Hint: $C_{n}=\operatorname{Cay}(\mathbb{Z} / n \mathbb{Z},\{-1,1\}), e^{2 \pi i a / n}+e^{-2 \pi i a / n}$ and apply the above item. To see that it is all use theorem about Fourier basis viewed in lecture.
(d) Compute all eigenvalues of Q_{d}, the d-dimensional hypercube: $V\left(Q_{d}\right)=$ $\{0,1\}^{d}$ and $a b$ is an edge whenever a and b differ in exactly one coordinate. Hint: Consider $Q_{d}=\operatorname{Cay}\left(\mathbb{Z}_{2}^{n} ;\left\{e_{i}: i \in[n]\right\}\right)$ and use the first item with the characters $\chi_{a}=(-1)^{\sum_{i \in[n]}}$. To argue that these are all use theorem viewd in lecture.
2. Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ denote a function. The influence of the k-th variable on f is defined by

$$
\operatorname{Inf}_{k}(f)=\operatorname{Pr}\left[x \in \mathbb{Z}_{2}^{n}: f(x) \neq f\left(x+e_{k}\right)\right]
$$

(a) Determine the influence of the majority function: for an odd n the function $\operatorname{Maj}\left(x_{1}, \ldots x_{n}\right):\{0,1\}^{n} \rightarrow\{0,1\}$ is defined as the more frequent value among x_{1}, \ldots, x_{n}.
Hint: How do the vectors in \mathbb{Z}_{2}^{n} look like for which the i-th variable can change the outcome of Maj?
(b) Using a formula in disjunctive normal form, construct an example of $f: \mathbb{Z}_{2}^{n} \rightarrow\{0,1\}$ with $\operatorname{Inf}_{k}(f)=\frac{2 \ln (n)}{n}(1+o(1))$ for every k.
Hint: Use the function $f_{b, c}:\{0,1\}^{b c} \rightarrow\{0,1\}$ defined by

$$
x \longmapsto \bigvee_{i=1}^{c} \bigwedge_{j=1}^{b} x_{i, j}
$$

and think about how to treat non-integer b and c.
3. Find the matrix of the linear mapping given by the Fourier transform on \mathbb{Z}_{n}. Explicitly, find a matrix M_{n} such that for every $f: \mathbb{Z}_{n} \rightarrow \mathbb{C}$ we have

$$
(\hat{f}(0), \ldots, \hat{f}(n-1))^{t}=M_{n}(f(0), \ldots, f(n-1))^{t}
$$

Compute $\operatorname{det}\left(M_{n}\right)$ and thus re-prove the fact that the Fourier transform is a bijection.

Hint: Consider the Vandermonde matrix.
4. Let G be an abelian group, and let $f: G \rightarrow \mathbb{C}$ be a function that is not identically zero. We define the support of f to be the set $\operatorname{Supp}(f)$ of all $x \in G$ for which $f(x) \neq 0$. Prove that
(a) $\operatorname{Supp}(f * g) \subseteq \operatorname{Supp}(f)+\operatorname{Supp}(g)$.

Hint: Work out from the definition of what it means that $x \in \operatorname{Supp}(f * g)$, noting that if the sum is non-zero then some summation must also be non-zero.
(b) $\|f * g\|_{\infty} \leq\|f\|_{p}\|g\|_{q}$, where $1 / p+1 / q=1$.

Hint: Use Hölder's inequality and be carefull with the definitions of the norm.
(c) $\widehat{f \cdot g}(\chi)=\sum_{\psi \in G} \hat{f}(\chi-\psi) \hat{g}(\psi)$.

Hint: Use the inverse Fourier transform.
(d) $|\operatorname{Supp}(f)| \cdot|\operatorname{Supp}(\hat{f})| \geq|G|$.

Hint: Notice that $\sum_{x \in G}|f(x)|^{2} \leq|\operatorname{Supp}(f)| \max _{x \in G}|f(x)|$ and $\max _{x \in G}|f(x)| \leq$ $\frac{1}{|G|}|\hat{f}(x)|$. Finally use Cauchy-Schwarz with $|\hat{f}(x)|$ and the constant funtion 1 .

