Mathematics++ Problem set 1 – Harmonic analysis Release: February 21st, 2023. Hints: March 14th, 2023. Deadline: March 21th, 2023.

Send solutions to dbulavka+mpp@kam.mff.cuni.cz.

The box product $G \Box H$ of graphs G and H is a graph whose vertex set is the cartesian product $V(G) \times V(H)$, and a pair of vertices $(u, u'), (v, v') \in V(G) \times V(H)$ is an edge in $G \Box H$ if either u = v and $u'v' \in E(H)$, or u' = v' and $uv \in E(G)$. The box product is associative.

- 1. Let G be a finite abelian group and let $S \subseteq G$ be a set such that $0 \notin S$ and S is symmetric (i.e., S = -S). The Cayley graph $\operatorname{Cay}(G; S)$ is the graph (G, E), where $ab \in E$ whenever $b-a \in S$. Let χ be a character of G, and let $A = (a_{ij})$ be the adjacency matrix of $\operatorname{Cay}(G; S)$, i.e., $a_{ij} = 1$ if ij is an edge and $a_{ij} = 0$ otherwise.
 - (a) Consider a vector $x \in \mathbb{C}^G$ such that for $a \in G$ we have $x_a = \chi(a)$. Prove that x is an eigenvector of $\operatorname{Cay}(G; S)$ (i.e., of the matrix A). *Hint:* Let Ax = y, then $y_i = \sum_{j \in G} a_{i,j}\chi(j)$, add and substract i in $\chi(j)$ and use the fact that χ is a group homomorphism and S is symmetric. [2]
 - (b) For i = 1, ..., d, let G_i be a group and $S_i \subseteq G_i$ a symmetric subsets such that $0 \notin S_i$ and let $G = \prod_{i=1}^d G_i$. Let χ_i be a character of G_i and set $x \in \mathbb{C}^G$ as $x_{(a_1,...,a_d)} = \chi_1(a_1) \cdots \chi_d(a_d)$. Show that x is an eigenvector of $\prod_{i=1}^d \operatorname{Cay}(G_i; S_i)$ and compute its eigenvalue. *Hint:* For each $i \in [d]$ and each $s \in S_i$ consider the vector $v_s \in G$ given by $(v_s)_j = s$ is j = i and 0 otherwise and let S be the set of all such v_s . Show that the Cayley graph $\operatorname{Cay}(G, S)$ coincides with $\prod_{i=1}^d \operatorname{Cay}(G_i; S_i)$. Then use that \hat{G} is isomorphic to

 $\prod_{i=1}^{d} \hat{G}_i$ as shown in the tutorial.

(c) For n_1, \ldots, n_d positive integers, find all the eigenvalues of the graph $\Box_i^d C_{n_i}$, where C_n is the cycle with n vertices. *Hint:* $C_n = \operatorname{Cay}(\mathbb{Z}/n\mathbb{Z}, \{-1, 1\}), e^{2\pi i a/n} + e^{-2\pi i a/n}$ and apply the above item. To see that it is all use theorem about Fourier basis viewed in lecture. [3]

[2]

- (d) Compute all eigenvalues of Q_d , the *d*-dimensional hypercube: $V(Q_d) = \{0, 1\}^d$ and *ab* is an edge whenever *a* and *b* differ in exactly one coordinate. *Hint:* Consider $Q_d = \operatorname{Cay}(\mathbb{Z}_2^n; \{e_i : i \in [n]\})$ and use the first item with the characters $\chi_a = (-1)^{\sum_{i \in [n]}}$. To argue that these are all use theorem viewd in lecture. [3]
- 2. Let $f: \{0,1\}^n \to \{0,1\}$ denote a function. The influence of the k-th variable on f is defined by

$$Inf_k(f) = \Pr[x \in \mathbb{Z}_2^n \colon f(x) \neq f(x + e_k)].$$

(a) Determine the influence of the majority function: for an odd n the function $\operatorname{Maj}(x_1, \ldots x_n) : \{0, 1\}^n \to \{0, 1\}$ is defined as the more frequent value among x_1, \ldots, x_n .

Hint: How do the vectors in \mathbb{Z}_2^n look like for which the *i*-th variable can change the outcome of Maj? [3]

(b) Using a formula in disjunctive normal form, construct an example of $f: \mathbb{Z}_2^n \to \{0,1\}$ with $\operatorname{Inf}_k(f) = \frac{2\ln(n)}{n}(1+o(1))$ for every k. *Hint:* Use the function $f_{b,c}$: $\{0,1\}^{bc} \to \{0,1\}$ defined by

$$x \longmapsto \bigvee_{i=1}^{c} \bigwedge_{j=1}^{b} x_{i,j}$$

and think about how to treat non-integer b and c.

3. Find the matrix of the linear mapping given by the Fourier transform on \mathbb{Z}_n . Explicitly, find a matrix M_n such that for every $f: \mathbb{Z}_n \to \mathbb{C}$ we have

$$(\hat{f}(0),\ldots,\hat{f}(n-1))^t = M_n(f(0),\ldots,f(n-1))^t$$

Compute $det(M_n)$ and thus re-prove the fact that the Fourier transform is a bijection.

Hint: Consider the Vandermonde matrix.

- 4. Let G be an abelian group, and let $f: G \to \mathbb{C}$ be a function that is not identically zero. We define the support of f to be the set Supp(f) of all $x \in G$ for which $f(x) \neq 0$. Prove that
 - (a) $\operatorname{Supp}(f * g) \subseteq \operatorname{Supp}(f) + \operatorname{Supp}(g)$. *Hint:* Work out from the definition of what it means that $x \in \text{Supp}(f * g)$, noting that if the sum is non-zero then some summation must also be non-zero. $[\mathbf{2}]$
 - (b) $||f * g||_{\infty} \le ||f||_p ||g||_q$, where 1/p + 1/q = 1. Hint: Use Hölder's inequality and be carefull with the definitions of the norm. [2]
 - (c) $\widehat{f \cdot g}(\chi) = \sum_{\psi \in G} \widehat{f}(\chi \psi) \widehat{g}(\psi).$ *Hint:* Use the inverse Fourier transform.
 - (d) $|\operatorname{Supp}(f)| \cdot |\operatorname{Supp}(\hat{f})| \ge |G|.$ *Hint:* Notice that $\sum_{x \in G} |f(x)|^2 \leq |\operatorname{Supp}(f)| \max_{x \in G} |f(x)|$ and $\max_{x \in G} |f(x)| \leq |\operatorname{Supp}(f)| = |\operatorname{Supp}(f)|$ $\frac{1}{|G|}|\hat{f}(x)|$. Finally use Cauchy-Schwarz with $|\hat{f}(x)|$ and the constant function 1. [3]

[4]

[4]

[2]