Mathematics++

Problem set 1 – Harmonic analysis

Release: February 21st, 2023. Hints: March 14th, 2023. Deadline: March 21th, 2023. Send solutions to dbulavka+mpp@kam.mff.cuni.cz.

The box product $G \Box H$ of graphs G and H is a graph whose vertex set is the cartesian product $V(G) \times V(H)$, and a pair of vertices $(u, u'), (v, v') \in V(G) \times V(H)$ is an edge in $G \Box H$ if either u = v and $u'v' \in E(H)$, or u' = v' and $uv \in E(G)$. The box product is associative.

- 1. Let G be a finite abelian group and let $S \subseteq G$ be a set such that $0 \notin S$ and S is symmetric (i.e., S = -S). The Cayley graph $\operatorname{Cay}(G; S)$ is the graph (G, E), where $ab \in E$ whenever $b-a \in S$. Let χ be a character of G, and let $A = (a_{ij})$ be the adjacency matrix of $\operatorname{Cay}(G; S)$, i.e., $a_{ij} = 1$ if ij is an edge and $a_{ij} = 0$ otherwise.
 - (a) Consider a vector $x \in \mathbb{C}^G$ such that for $a \in G$ we have $x_a = \chi(a)$. Prove that x is an eigenvector of $\operatorname{Cay}(G; S)$ (i.e., of the matrix A). [2]
 - (b) For i = 1, ..., d, let G_i be a group and $S_i \subseteq G_i$ a symmetric subsets such that $0 \notin S_i$ and let $G = \prod_{i=1}^d G_i$. Let χ_i be a character of G_i and set $x \in \mathbb{C}^G$ as $x_{(a_1,...,a_d)} = \chi_1(a_1) \cdots \chi_d(a_d)$. Show that x is an eigenvector of $\prod_{i=1}^d \operatorname{Cay}(G_i; S_i)$ and compute its eigenvalue. [2]
 - (c) For n_1, \ldots, n_d positive integers, find all the eigenvalues of the graph $\Box_i^d C_{n_i}$, where C_n is the cycle with *n* vertices. [3]
 - (d) Compute all eigenvalues of Q_d , the *d*-dimensional hypercube: $V(Q_d) = \{0, 1\}^d$ and *ab* is an edge whenever *a* and *b* differ in exactly one coordinate. [3]
- 2. Let $f: \{0,1\}^n \to \{0,1\}$ denote a function. The influence of the k-th variable on f is defined by

$$Inf_k(f) = \Pr[x \in \mathbb{Z}_2^n \colon f(x) \neq f(x + e_k)].$$

- (a) Determine the influence of the majority function: for an odd n the function $\operatorname{Maj}(x_1, \ldots, x_n) : \{0, 1\}^n \to \{0, 1\}$ is defined as the more frequent value among x_1, \ldots, x_n . [3]
- (b) Using a formula in disjunctive normal form, construct an example of $f: \mathbb{Z}_2^n \to \{0, 1\}$ with $\operatorname{Inf}_k(f) = \frac{2\ln(n)}{n}(1+o(1))$ for every k. [4]
- 3. Find the matrix of the linear mapping given by the Fourier transform on \mathbb{Z}_n . Explicitly, find a matrix M_n such that for every $f: \mathbb{Z}_n \to \mathbb{C}$ we have

$$(\hat{f}(0),\ldots,\hat{f}(n-1))^t = M_n(f(0),\ldots,f(n-1))^t.$$

Compute $det(M_n)$ and thus re-prove the fact that the Fourier transform is a bijection. [4]

- 4. Let G be an abelian group, and let $f: G \to \mathbb{C}$ be a function that is not identically zero. We define the support of f to be the set Supp(f) of all $x \in G$ for which $f(x) \neq 0$. Prove that
 - (a) $\operatorname{Supp}(f * g) \subseteq \operatorname{Supp}(f) + \operatorname{Supp}(g).$ [2]
 - (b) $||f * g||_{\infty} \le ||f||_{p} ||g||_{q}$, where 1/p + 1/q = 1. [2]

(c)
$$\widehat{f \cdot g}(\chi) = \sum_{\psi \in G} \widehat{f}(\chi - \psi) \widehat{g}(\psi).$$
 [2]

(d) $|\operatorname{Supp}(f)| \cdot |\operatorname{Supp}(\hat{f})| \ge |G|.$ [3]