Mathematics++
 Classwork 2 - Fourier Analysis
 March 7th, 2023.

1. For $S \subseteq\{1, \ldots, n\}$ and $x \in \mathbb{Z}_{2}^{n}$ let

$$
\chi_{S}(x)=(-1)^{\sum_{i \in S} x_{i}} .
$$

For $a=\left(a_{1}, \ldots, a_{k}\right), x=\left(x_{1}, \ldots, x_{k}\right) \in \oplus_{i=1}^{k} \mathbb{Z} / n_{i} \mathbb{Z}$ let

$$
\chi_{a}(x)=e\left(\sum_{i=1}^{k} \frac{a_{i} x_{i}}{n_{i}}\right) .
$$

Here $e(x)=e^{2 \pi i x}$.
(a) Prove that the mappings χ_{S} and χ_{a} given above are characteres.
(b) Prove that the assignment $a \mapsto \chi_{a}$ is injective group homomorphism.
2. Compute the Fourier transform as well as the inverse Fourier transform for the following functions:
(a) χ_{a}
(b) δ_{a}
(c) $\delta_{-1}+\delta_{0}+\delta_{1}$ for $G=\mathbb{Z}_{n}$
(d) $\sum_{i=0}^{k-1} \delta_{i l}$ for $G=\mathbb{Z}_{k l}$
3. Verify that
(a) $\hat{f}(0)=\mathbb{E}[f]$ for every finite abelian group and every function f.
(b) $\|\hat{f}\|_{\infty} \leq\|f\|_{1}$.
4. Fix $p \in G$ and $c \in \mathbb{C}$. We define operators T_{p} and P_{c} to map a function $f: G \rightarrow \mathbb{C}$ to another function defined as follows: $\left(T_{p} f\right)(x)=f(x+p)$ and $\left(P_{c} f\right)(x)=c f(x)$. In case G is a field and $p \neq 0$, we also define $\left(S_{p} f\right)(x)=$ $f(p x)$. Prove that
(a) $\hat{T_{p}} f(a)=\chi_{a}(p) \hat{f}(a)$
(b) $\hat{P_{c}} f(a)=c \hat{f}(a)$
(c) $\hat{S_{p} f}(a)=\hat{f}(a / p)$
5. Let $f, g: G \rightarrow \mathbb{C}$ two functions defined on a finite abelian group, their convolution is given by $(f * g)(z)=\frac{1}{|G|} \sum_{x \in G} f(x) g(z-x)$. Verify that for function $f, g, h: G \rightarrow \mathbb{C}$ defined on a finite abelian group and for complex numbers a, b the convolution satisfies the following:
(a) $f * g=g * f$,
(b) $f *(g * h)=(f * g) * h$,
(c) $(a f+b g) * h=a(f * h)+b(g * h)$
6. Let G be a k-regular non-bipartite graph with n vertices and adjacency matrix A. Define $\mu=\max \{|\lambda|: \lambda \in \operatorname{Spec}(A),|\lambda| \neq k\}$. Show that the diameter of G satisfies $d \leq \frac{\log (n-1)}{\log (k)-\log (\mu)}+1$.
7. Let $1 \leq r<n$ and set $G=C a y(\mathbb{Z} / n \mathbb{Z}, B(r))$ where $B(r)=\{ \pm 1, \ldots, \pm r$ $\bmod n\}$.
(a) Show that G is regular.
(b) Decide if G is Ramanujan, i.e., let G be k-regular then it is Ramanjuan if for $\lambda \in \operatorname{Spec}(\operatorname{Adj}(G))$ such that $|\lambda| \neq k$ then $|\lambda| \leq 2 \sqrt{k-1}$.

