Mathematics++

Classwork 1 – Harmonic analysis

February 21st, 2023.

Definition 1. Set $\mathbb{T} = \{z \in \mathbb{C} : ||z|| = 1\}$. Let G = (G, +, 0) be a finite abelian group. We say that a function $\chi : G \to \mathbb{T}$ is a character of G if it is a group homomorphism. Let \widehat{G} be the set of all characters of G.

A Hilbert space H is an *n*-dimensional vector space over \mathbb{C} with inner product $\langle \cdot, \cdot \rangle \colon H \times H \to \mathbb{C}$. If v_1, \ldots, v_n is an orthogonal basis then for $f \in H$ we have that $f = \sum_{i=1}^n \frac{\langle v_i, f \rangle}{\langle v_i, v_i \rangle} v_i$.

Let G = (G, *, 1) and H = (H, *', 1') be two groups, a function $f: G \to H$ is a group homomorphism is f(1) = 1' and f(a * b) = f(a) *' f(b).

- 1. If $z \in \mathbb{T}$, then $z^{-1} = \overline{z}$.
- 2. If χ is a character of G, then $1/\chi$ is a character of G.
- 3. If $\chi: G \to \mathbb{C} \setminus \{0\}$ group homomorphism, then χ is character of G.
- 4. Show that $\widehat{\bigoplus_{i=1}^{d} G_i}$ and $\bigoplus_{i=1}^{d} \widehat{G_i}$ are isomorphic as groups.
- 5. Let $L_2(\mathbb{Z}/n\mathbb{Z}) = \{f : \mathbb{Z}/n\mathbb{Z} \to \mathbb{C}\}$ with inner product given by $\langle f, g \rangle = \sum_{i=1}^n f(i)\overline{g(i)}$.
 - (a) Verify that it is interior product.
 - (b) Show that $L_2(\mathbb{Z}/n\mathbb{Z})$ is an *n*-dimensional vector space over \mathbb{C} with basis consisting of $\delta_0, \ldots, \delta_{n-1}$ where $\delta_i(j) = 1$ if i = j and 0 otherwise.
 - (c) Show that δ_i 's form an orthonormal basis of $L_2(\mathbb{Z}/n\mathbb{Z})$.
 - (d) Since δ_i 'a form orthonormal basis we can write any $f \in L_2(\mathbb{Z}/n\mathbb{Z})$ as $f(x) = \sum_{i=0}^{n-1} \delta_i(x) f(i)$. Show that $T: L_2(\mathbb{Z}/n\mathbb{Z}) \to \mathbb{C}^n$ given by $T(f) = (f(0), \ldots, f(n-1))$ is a vector space isomorphism.
- 6. Let $f: \{0,1\}^n \to \{0,1\}$. The influence of the k-th variable on f is defined by

$$Inf_k(f) = \Pr[x \in \mathbb{Z}_2^n \colon f(x) \neq f(x + e_k)].$$

Compute the k-th influence of the following functions:

- (a) $f(x) = x_1$.
- (b) $f(x) = \sum_{i=1}^{n} x_i \mod 2.$
- 7. Show that \mathbb{T} and \mathbb{R}/\mathbb{Z} isomorphic as groups.