Mathematics++

Classwork 1 - Harmonic analysis

February 21st, 2023.

Definition 1. Set $\mathbb{T}=\{z \in \mathbb{C}:\|z\|=1\}$. Let $G=(G,+, 0)$ be a finite abelian group. We say that a function $\chi: G \rightarrow \mathbb{T}$ is a character of G if it is a group homomorphism. Let \widehat{G} be the set of all characters of G.

A Hilbert space H is an n-dimensional vector space over \mathbb{C} with inner product $\langle\cdot, \cdot\rangle: H \times H \rightarrow \mathbb{C}$. If v_{1}, \ldots, v_{n} is an orthogonal basis then for $f \in H$ we have that $f=\sum_{i=1}^{n} \frac{\left\langle v_{i}, f\right\rangle}{\left\langle v_{i} v_{i}\right\rangle} v_{i}$.
Let $G=(G, *, 1)$ and $H=\left(H, *^{\prime}, 1^{\prime}\right)$ be two groups, a function $f: G \rightarrow H$ is a group homomorphism is $f(1)=1^{\prime}$ and $f(a * b)=f(a) *^{\prime} f(b)$.

1. If $z \in \mathbb{T}$, then $z^{-1}=\bar{z}$.
2. If χ is a character of G, then $1 / \chi$ is a character of G.
3. If $\chi: G \rightarrow \mathbb{C} \backslash\{0\}$ group homomorphism, then χ is character of G.
4. Show that $\widehat{\bigoplus_{i=1}^{d} G_{i}}$ and $\bigoplus_{i=1}^{d} \widehat{G_{i}}$ are isomorphic as groups.
5. Let $L_{2}(\mathbb{Z} / n \mathbb{Z})=\{f: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{C}\}$ with inner product given by $\langle f, g\rangle=$ $\sum_{i=1}^{n} f(i) \overline{g(i)}$.
(a) Verify that it is interior product.
(b) Show that $L_{2}(\mathbb{Z} / n \mathbb{Z})$ is an n-dimensional vector space over \mathbb{C} with basis consisting of $\delta_{0}, \ldots, \delta_{n-1}$ where $\delta_{i}(j)=1$ if $i=j$ and 0 otherwise.
(c) Show that δ_{i} 's form an orthonormal basis of $L_{2}(\mathbb{Z} / n \mathbb{Z})$.
(d) Since δ_{i} 'a form orthonormal basis we can write any $f \in L_{2}(\mathbb{Z} / n \mathbb{Z})$ as $f(x)=\sum_{i=0}^{n-1} \delta_{i}(x) f(i)$. Show that $T: L_{2}(\mathbb{Z} / n \mathbb{Z}) \rightarrow \mathbb{C}^{n}$ given by $T(f)=$ $(f(0), \ldots, f(n-1))$ is a vector space isomorphism.
6. Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$. The influence of the k-th variable on f is defined by

$$
\operatorname{Inf}_{k}(f)=\operatorname{Pr}\left[x \in \mathbb{Z}_{2}^{n}: f(x) \neq f\left(x+e_{k}\right)\right] .
$$

Compute the k-th influence of the following functions:
(a) $f(x)=x_{1}$.
(b) $f(x)=\sum_{i=1}^{n} x_{i} \bmod 2$.
7. Show that \mathbb{T} and \mathbb{R} / \mathbb{Z} isomorphic as groups.

