Topological methods in combinatorics - tutorials

Problem set 1 – Basics of general and algebraic topology

Submitted: 25.02.2022 - Hints: 11.03.2021 - Deadline: 18.03.2021Submit solution to: dbulavka+tm at kam.mff.cuni.cz

Please include with your solutions a statement if you want your score to be displayed on the website as well as a nickname.

1. Let X and Y be topological spaces, $f: X \to Y$ continuous function and $M, N \subset X$. Decide if the following claims hold, justify in each case.

(a)	If M is closed set, then $f(M)$ is closed.	[1]
	<i>Hint:</i> Think of a subset of \mathbb{R} that is not closed.	
(b)	If M is open set, then $f(M)$ is open.	[1]
	<i>Hint:</i> Think of a subset of \mathbb{R} that is not open	
(c)	If M is connected then $f(M)$ is connected.	[1]
	<i>Hint:</i> Verify that it satisfies the definition of connectivity.	
(d)	If M is disconnected, then $f(M)$ is disconnected.	[1]
	<i>Hint:</i> Think of a non-injective function	
		F . 7

- (e) If M is closed and N compact, then $M \cap N$ is compact. [1] *Hint:* Verify that it satisfies the definition of compactness.
- 2. Let v_1, \ldots, v_n be the vertices of a convex polygon P in \mathbb{R}^2 with the origin in the interior. Show that ∂P and S^1 are homeomorphic. [3]

Hint: Consider the function $f: P \to S^1$ given by f(x) = x/||x|| and use the proposition showed in the tutorial about compact Hausdorff spaces.

3. Show that the topology on \mathbb{R}^n given by the basis

 $\{B(x,\epsilon)\colon x\in\mathbb{R}^n, \epsilon\in\mathbb{R} \text{ such that } \epsilon>0\}$

coincides with the one given by $\epsilon - \delta$ definition. Here $B(x, \epsilon)$ is the open ball with center x and radius ϵ . [2]

Hint: Compare the two definition of open set. Notice that any point x in an open set U in the $\epsilon - \delta$ topology has an open ball $B(x, \epsilon) \subset U$. Write U as the union of these.

4. Let $1 \le r \le n/2$, the Kneser graph $KG_{n,r}$ is the graph with vertex set all the *r*-subsets of [n], i.e. $V(KG_{n,r}) = \{S \subset [n] : |S| = r\}$. A pair of *r*-sets *S*, *T* form an edge in $KG_{n,r}$ if $S \cap T = \emptyset$. Show that the chromatic number of $KG_{n,r}$ is at most n - 2r + 2. [2]

Hint: Consider the coloring given by $c(F) = \min\{F, n - 2r + 2\}$.

5. (Gluing lemma for continuous functions) Let X be a topological space and A_1, \ldots, A_n closed subspaces of X such that $X = \bigcup_{i=1}^n A_i$. Let $f: X \to Y$ function between topological spaces. Show that f is continuous if and only if the restriction of f to each A_i is continuous. [2]

Hint: Verify that it satisfy the definition of continuous function with closed sets.

6. Show that the connected components of a topological space X are closed subsets. [2]

Hint: Assume it is not the case. A connected component C is a maximal connected set. Consider the closure Cl(C) of C. The Cl(C) must be disconnected. Following this argument you will reach a contradiction.

7. Show that two connected graphs with the same number of vertices and edges are homotopically equivalent. [4]

Hint: Let G be a graph, this is a simplicial complex so its geometrical realization is well defined. Let T be a tree, then its geometric realization, |T|, is contractible, i.e. homotopy equivalent to a point. In the case of a tree we can see this by showing homotopy equivalence to a vertex, by contracting one edge at a time, and arguing by transitivity. Once we have that we can see that a graph G is homotopy equivalent to a point with several S^1 attached to it by taking a spanning tree. How many S^1 are attached to the point?