Mathematics++

Practicals 5 – Functional analysis

May 16th, 2022

All the vector spaces (also called linear spaces) are over the field \mathbb{R} .

Definition: Let *E* be a normed linear space. A **closed hyperplane** is every set of the form $H = \{x \in E : f(x) = \alpha\}$ where $f \in E^*$, $f \neq 0$ and $\alpha \in \mathbb{R}$. (This is the same as translations of maximal proper subspaces).

Spaces and norms:

- $\mathcal{C}([0,1])$: continuous functions $[0,1] \to \mathbb{R}$ with norm $||f|| = \max\{|f(t)| : t \in [0,1]\}$.
- c: convergent sequences with norm $||x_n|| = \sup \{|x_n| : n \in \mathbb{N}\}.$
- c_0 : sequences convergent to 0, subspace of c.
- l^{∞} : bounded sequences, same norm as in c.
- \mathcal{L}^p : measurable functions on X with norm $||f||_p = (\int |f|^p d\mu)^{1/p}$. This is not a norm, functions that are zero almost everywhere have norm zero.
- L^p : \mathcal{L}^p modulo functions that are zero almost everywhere.
- 1. Find a function $f \colon \mathbb{R} \to \mathbb{R}$ such that |f(x) f(y)| < |x y| but f is not a contraction.

Řešení: Consider the function $f: \mathbb{R} \to \mathbb{R}$ defined on unit lenght intervals [i-1,i] by sending it to the interval $[0, 1-1/2^i]$ for $i = 1, \ldots$. For i odd we have that $f(i-1+t) = (1-1/2^i)t$ and for i even we have $f(i-1+t) = (1-1/2^{i-1})(1-t)$. We can verify that at the end points it coincides and consequently it is well defined. We do the analogous symmetrically for negative number. It satisfies the hypothesis: (1) for x, y in the same interval we have that $|f(x)-f(y)| = (1-1/2^i)|t-t'| = (1-1/2^i)|x-y|$; (2) on consecutive intervals for i odd, x = i-1+t and y = (i+1)-1+t'; we have that $|f(x)-f(y)| \le |f(x)-f(i)|+|f(i)-f(y)| \le |x-i|+|i-y| = |x-y|$; (3) on non-consecutive intervals is immediate since |f(x)-f(y)| < 1. The function f is not contraction since $|f(i-1) - f(i)| = 1 - 1/2^i$ which goes to 1.

2. Find a function $f : \mathbb{R} \to \mathbb{R}$ such that |f(x) - f(y)| < |x - y| but f has no fixed point.

Řešení: Let f be the function defined in the first exercise. Its only fixed point is the 0, it is enough to shift it by a little bit, say g(x) = f(x) + 1/8. This way in the interval [0, 1] the image is strictly inside [0, 1] and for the remaining number it is below 2.

3. Show that every subspace of a normed linear space of finite dimension is closed. Find a counterexample for a space of infinite dimension.

Řešení: Because any two normed linear spaces with the same dimension are topologically isomorphic we can consider without loss of generality that our space is \mathbb{R}^n . A subspace of \mathbb{R}^n is isomorphic to \mathbb{R}^k for some k which is an intersection of hyperplanes and consequently closed. For the counterexample, consider in c_0 the subspace generated by elements e_i , i.e. $(e_i)_j = 1$ if i = j and 0 otherwise. Consider the sequence a_i given by $(a_i)_j = 1/j$ for j < iand 0 otherwise. This sequence converges to $(1/j)_{j \in \mathbb{N}}$ which is in c_0 but not in the subspace. 4. Show that complement of every proper subspace of a normed linear space is dense.

Řešení: Let $W \subseteq V$ closed proper subspace and $U = V \setminus W \neq \emptyset$ because W is proper. Let B be open ball, we want to verify that $B \cap U \neq \emptyset$. Assume that it is not the case, i.e. $B \cap U = \emptyset$, then $B = B(x,r) \subseteq W$. Take $y \in U \neq \emptyset$, and take $\lambda = \frac{r}{2|x-y|}$, then $z = x + (y-x)\lambda \in B(x,r) \subseteq W$, and consequently $y = x + \frac{1}{\lambda}(z-x) \in W$, which is a contradiction.

5. Show that unit ball in a Hilbert space of inifinite dimension is not compact.

Řešení: Consider an orthonormal basis. Every pair of elements have distance $\sqrt{2}$, i.e. no convergent subsequence.

6. Prove Mazur theorem: Let C be an open convex subset of a normed linear space E and $z \in E \setminus C$. Then there exists a closed hyperplane $H \subset E$ such that $z \in H$ and $H \cap C = \emptyset$.

Řešení: Without loss of generality assume that z = 0. Let $G = \{\lambda c : c \in C, \lambda > 0\}$ be the cone over C. Define the function

$$p(x): = \inf\{||x+y||: y \in G\}.$$

Let g_0 such that $||g_0|| = 1$ and set $f(\lambda g_0) = \lambda$ defined on the subspace $Y: = \{\lambda g_0: \lambda \in \mathbb{R}\}.$

We apply Hahn-Banach lemma: X linear space and $p: X \to \mathbb{R}$ continuous function such that $p(x+y) \leq p(x) + p(y)$ and $p(\lambda x) = \lambda p(x)$ for all $\lambda \geq 0$, $x, y \in X$; let Y subspace of X and $f \in Y^*$ such that $f(x) \leq p(x)$ for all $x \in Y$. Then, there exists $F \in X^*$ extending f to X such that $F(x) \leq p(x)$ for all $x \in X$.

Verify that the defined p is in the hypothesis of Hahn-Banach lemma.

Let F be the extention. Then F(g) > 0 for all $g \in G$. Notice that p(-g) = 0 for all $g \in G$, then if F(g) < 0, then F(-g) > 0 which contradicts $F(-g) \le p(-g) = 0$. If F(g) = 0then it is 0 on -g as well, therefore on some neighborhood of -g, because C is open and consequently a neighborhood of g is in G. Consequently F is 0 everywhere. Then it is enough to set $H = \{x \in E : Fx = 0\}$.

- 7. Decide whether following functionals on a normed linear space X are linear and continuous. If so, determine their norm.
 - (a) $F: (x_n)_{i \in \mathbb{Z}^+} \mapsto \sum_{i=1}^{\infty} \frac{x_i}{i^2}, X = c_0$ *Řešení:* It is well defined, because $\sum_i 1/i^2 < \infty$. It is linear. Its norm is $\sum_i 1/i^2$.
 - (b) $F: f \mapsto \int_0^1 tf(t) dt, X = L^p([0,1])$ *Řešení:* It is linear. It is continuous:

$$\left| \int_{0}^{1} tf(t) \, \mathrm{d}t \right| \leq \int_{0}^{1} t \, |f(t)| \, \, \mathrm{d}t \leq \int_{0}^{1} |f(t)| \, \, \mathrm{d}t = \|f\|_{1} \leq \|f\|_{p}$$

Computation of norm: for p = 1 the sequence of functions ix^{i-1} show that the norm is 1. For $p = \infty$ take the function constant 1, so the norm is 1/2.

For the general case we will need Hölder inequality: for $p, q \in [1, \infty]$ such that 1/p + 1/q = 1 then $\|fg\|_1 \le \|f\|_p \|g\|_q$. Let $f = t^{q/p}$, then

$$\|F\| = \left\|t^{q/p}\right\|_p \|t\|_q / \left\|t^{q/p}\right\|_p = \sqrt[q]{\int_0^1 t^q} = \left(\frac{1}{1+q}\right)^{1/q} = \left(\frac{p-1}{2p-1}\right)^{\frac{p-1}{p}}$$

(c) $F: f \mapsto \lim_{n \to \infty} \int_0^1 f(t^n) dt, X = \mathcal{C}([0, 1])$ *Řešení:* It is linear. It is continuous:

$$\left|\lim_{n \to \infty} \int_0^1 f(t^n) \, \mathrm{d}t\right| \le \lim_{n \to \infty} \int_0^1 \max f \, \mathrm{d}t = \|f\|$$

Function f = 1 shows that the norm is 1.