Mathematics++
 Practicals 5 - Functional analysis

May 16th, 2022

All the vector spaces (also called linear spaces) are over the field \mathbb{R}.
Definition: Let E be a normed linear space. A closed hyperplane is every set of the form $H=\{x \in E: f(x)=\alpha\}$ where $f \in E^{*}, f \neq 0$ and $\alpha \in \mathbb{R}$. (This is the same as translations of maximal proper subspaces).
Spaces and norms:

- $\mathcal{C}([0,1])$: continuous functions $[0,1] \rightarrow \mathbb{R}$ with norm $\|f\|=\max \{|f(t)|: t \in[0,1]\}$.
- c: convergent sequences with norm $\left\|x_{n}\right\|=\sup \left\{\left|x_{n}\right|: n \in \mathbb{N}\right\}$.
- c_{0} : sequences convergent to 0 , subspace of c.
- l^{∞} : bounded sequences, same norm as in c.
- \mathcal{L}^{p} : measurable functions on X with norm $\|f\|_{p}=\left(\int|f|^{p} \mathrm{~d} \mu\right)^{1 / p}$. This is not a norm, functions that are zero almost everywhere have norm zero.
- $L^{p}: \mathcal{L}^{p}$ modulo functions that are zero almost everywhere.

1. Find a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $|f(x)-f(y)|<|x-y|$ but f is not a contraction.

Řešení: Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined on unit lenght intervals $[i-1, i]$ by sending it to the interval $\left[0,1-1 / 2^{i}\right]$ for $i=1, \ldots$. For i odd we have that $f(i-1+t)=\left(1-1 / 2^{i}\right) t$ and for i even we have $f(i-1+t)=\left(1-1 / 2^{i-1}\right)(1-t)$. We can verify that at the end points it coincides and consequently it is well defined. We do the analogous symmetrically for negative number. It satisfies the hypothesis: (1) for x, y in the same interval we have that $|f(x)-f(y)|=\left(1-1 / 2^{i}\right)\left|t-t^{\prime}\right|=\left(1-1 / 2^{i}\right)|x-y| ;(2)$ on consecutive intervals for i odd, $x=i-1+t$ and $y=(i+1)-1+t^{\prime}$; we have that $|f(x)-f(y)| \leq|f(x)-f(i)|+|f(i)-f(y)| \leq$ $|x-i|+|i-y|=|x-y| ;(3)$ on non-consecutive intervals is immediate since $|f(x)-f(y)|<1$. The function f is not contraction since $|f(i-1)-f(i)|=1-1 / 2^{i}$ which goes to 1 .
2. Find a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $|f(x)-f(y)|<|x-y|$ but f has no fixed point.

Řešeni: Let f be the function defined in the first exercise. Its only fixed point is the 0 , it is enough to shift it by a little bit, say $g(x)=f(x)+1 / 8$. This way in the interval $[0,1]$ the image is strictly inside $[0,1]$ and for the remaining number it is below 2 .
3. Show that every subspace of a normed linear space of finite dimension is closed. Find a counterexample for a space of infinite dimension.

Řešení: Because any two normed linear spaces with the same dimension are topologically isomorphic we can consider without loss of generality that our space is \mathbb{R}^{n}. A subspace of \mathbb{R}^{n} is isomorphic to \mathbb{R}^{k} for some k which is an intersection of hyperplanes and consequently closed. For the counterexample, consider in c_{0} the subspace generated by elements e_{i}, i.e. $\left(e_{i}\right)_{j}=1$ if $i=j$ and 0 otherwise. Consider the sequence a_{i} given by $\left(a_{i}\right)_{j}=1 / j$ for $j<i$ and 0 otherwise. This sequence converges to $(1 / j)_{j \in \mathbb{N}}$ which is in c_{0} but not in the subspace.
4. Show that complement of every proper subspace of a normed linear space is dense.

Řešeni: Let $W \subseteq V$ closed proper subspace and $U=V \backslash W \neq \emptyset$ because W is proper. Let B be open ball, we want to verify that $B \cap U \neq \emptyset$. Assume that it is not the case, i.e. $B \cap U=\emptyset$, then $B=B(x, r) \subseteq W$. Take $y \in U \neq \emptyset$, and take $\lambda=\frac{r}{2|x-y|}$, then $z=x+(y-x) \lambda \in B(x, r) \subseteq W$, and consequently $y=x+\frac{1}{\lambda}(z-x) \in W$, which is a contradiction.
5. Show that unit ball in a Hilbert space of inifinite dimension is not compact.

Řešení: Consider an orthonormal basis. Every pair of elements have distance $\sqrt{2}$, i.e. no convergent subsequence.
6. Prove Mazur theorem: Let C be an open convex subset of a normed linear space E and $z \in E \backslash C$. Then there exists a closed hyperplane $H \subset E$ such that $z \in H$ and $H \cap C=\emptyset$.

Řešení: Without loss of generality assume that $z=0$. Let $G=\{\lambda c: c \in C, \lambda>0\}$ be the cone over C. Define the function

$$
p(x):=\inf \{\|x+y\|: y \in G\}
$$

Let g_{0} such that $\left\|g_{0}\right\|=1$ and set $f\left(\lambda g_{0}\right)=\lambda$ defined on the subspace $Y:=\left\{\lambda g_{0}: \lambda \in \mathbb{R}\right\}$. We apply Hahn-Banach lemma: X linear space and $p: X \rightarrow \mathbb{R}$ continuous function such that $p(x+y) \leq p(x)+p(y)$ and $p(\lambda x)=\lambda p(x)$ for all $\lambda \geq 0, x, y \in X$; let Y subspace of X and $f \in Y^{*}$ such that $f(x) \leq p(x)$ for all $x \in Y$. Then, there exists $F \in X^{*}$ extending f to X such that $F(x) \leq p(x)$ for all $x \in X$.
Verify that the defined p is in the hypothesis of Hahn-Banach lemma.
Let F be the extention. Then $F(g)>0$ for all $g \in G$. Notice that $p(-g)=0$ for all $g \in G$, then if $F(g)<0$, then $F(-g)>0$ which contradicts $F(-g) \leq p(-g)=0$. If $F(g)=0$ then it is 0 on $-g$ as well, therefore on some neighborhood of $-g$, because C is open and consequently a neighborhood of g is in G. Consequently F is 0 everywhere. Then it is enough to set $H=\{x \in E: F x=0\}$.
7. Decide whether following functionals on a normed linear space X are linear and continuous. If so, determine their norm.
(a) $F:\left(x_{n}\right)_{i \in \mathbb{Z}^{+}} \mapsto \sum_{i=1}^{\infty} \frac{x_{i}}{i^{2}}, X=c_{0}$

Řešeni: It is well defined, because $\sum_{i} 1 / i^{2}<\infty$. It is linear. Its norm is $\sum_{i} 1 / i^{2}$.
(b) $F: f \mapsto \int_{0}^{1} t f(t) \mathrm{d} t, X=L^{p}([0,1])$

Řešeni: It is linear. It is continuous:

$$
\left|\int_{0}^{1} t f(t) \mathrm{d} t\right| \leq \int_{0}^{1} t|f(t)| \mathrm{d} t \leq \int_{0}^{1}|f(t)| \mathrm{d} t=\|f\|_{1} \leq\|f\|_{p}
$$

Computation of norm: for $p=1$ the sequence of funtions $i x^{i-1}$ show that the norm is 1 . For $p=\infty$ take the function constant 1 , so the norm is $1 / 2$.
For the general case we will need Hölder inequality: for $p, q \in[1, \infty]$ such that $1 / p+$ $1 / q=1$ then $\|f g\|_{1} \leq\|f\|_{p}\|g\|_{q}$. Let $f=t^{q / p}$, then

$$
\|F\|=\left\|t^{q / p}\right\|_{p}\|t\|_{q} /\left\|t^{q / p}\right\|_{p}=\sqrt[q]{\int_{0}^{1} t^{q}}=\left(\frac{1}{1+q}\right)^{1 / q}=\left(\frac{p-1}{2 p-1}\right)^{\frac{p-1}{p}}
$$

(c) $F: f \mapsto \lim _{n \rightarrow \infty} \int_{0}^{1} f\left(t^{n}\right) \mathrm{d} t, X=\mathcal{C}([0,1])$

Řešení: It is linear. It is continuous:

$$
\left|\lim _{n \rightarrow \infty} \int_{0}^{1} f\left(t^{n}\right) \mathrm{d} t\right| \leq \lim _{n \rightarrow \infty} \int_{0}^{1} \max f \mathrm{~d} t=\|f\|
$$

Function $f=1$ shows that the norm is 1 .

