Mathematics++

Practicals 5 — Functional analysis
May 16th, 2022

All the vector spaces (also called linear spaces) are over the field R.

Definition: Let E be a normed linear space. A closed hyperplane is every set
of the foorm H ={z € E: f(z) = a} where f € E*, f # 0 and o« € R. (This is the
same as translations of maximal proper subspaces).

Spaces and norms:

« C([0,1]): continuous functions [0, 1] — R with norm || f|| = max {|f(¢)| : t € [0,1]}.

c¢: convergent sequences with norm ||z, | = sup {|z,| : n € N}.
 ¢o: sequences convergent to 0, subspace of c.

e [*: bounded sequences, same norm as in c.

« LP: measurable functions on X with norm ||f||, = (S IfI7 d,u)l/p. This is not
a norm, functions that are zero almost everywhere have norm zero.

o LP: LP” modulo functions that are zero almost everywhere.

1. Find a function f: R — R such that |f(z) — f(y)| < |z — y| but f is not a
contraction.

Reseni: Consider the function f: R — R defined on unit lenght intervals [i — 1, 4] by sending
it to the interval [0,1—1/2%] for i = 1,.... For i odd we have that f(i —1+¢) = (1 —1/2")t
and for i even we have f(i —1+t) = (1 —1/2¢71)(1 — t). We can verify that at the end
points it coincides and consequently it is well defined. We do the analogous symmetrically
for negative number. It satisfies the hypothesis: (1) for z, y in the same interval we have
that |f(z)— f(y)] = (1-1/29)|t—#'| = (1—1/2%)|x—y]; (2) on consecutive intervals for i odd,
z=i—l+tandy = (i+1)—14t'; we have that | f(z)— f(y)| < |f(z) = f(@)|+]f(1) = f ()| <
|x—i|+]i—y| = |x—y| ;(3) on non-consecutive intervals is immediate since | f(x)— f(y)| < 1.
The function f is not contraction since |f(i — 1) — f(i)| = 1 — 1/2% which goes to 1.

2. Find a function f : R — R such that |f(z) — f(y)| < |x — y| but f has no
fixed point.

Reseni: Let f be the function defined in the first exercise. Its only fixed point is the 0, it is
enough to shift it by a little bit, say g(z) = f(z) + 1/8. This way in the interval [0, 1] the
image is strictly inside [0, 1] and for the remaining number it is below 2.

3. Show that every subspace of a normed linear space of finite dimension is closed.
Find a counterexample for a space of infinite dimension.

Res$eni: Because any two normed linear spaces with the same dimension are topologically
isomorphic we can consider without loss of generality that our space is R™. A subspace of
R" is isomorphic to R* for some k which is an intersection of hyperplanes and consequently
closed. For the counterexample, consider in ¢y the subspace generated by elements e;, i.e.
(e;); = 1if i = j and 0 otherwise. Consider the sequence a; given by (a;); = 1/j for j <

and 0 otherwise. This sequence converges to (1/j);en which is in ¢y but not in the subspace.



4. Show that complement of every proper subspace of a normed linear space is
dense.

Reseni: Let W C V closed proper subspace and U = V \ W # () because W is proper.
Let B be open ball, we want to verify that BN U # (). Assume that it is not the case,
ie. BNU = 0, then B = B(z,r) C W. Take y € U # 0, and take A = 3Ty then
z=2z+4 (y — )X € B(z,r) C W, and consequently y = x + +(z — ) € W, which is a

contradiction.

5. Show that unit ball in a Hilbert space of inifinite dimension is not compact.

Res$eni: Consider an orthonormal basis. Every pair of elements have distance v/2, i.e. no

convergent subsequence.

6. Prove Mazur theorem: Let C' be an open convex subset of a normed linear
space E and z € E'\ C. Then there exists a closed hyperplane H C E such
that z € H and HNC = (.

Reseni: Without loss of generality assume that z = 0. Let G = {\c: ¢ € C,; X > 0} be the
cone over C. Define the function

p(e): = int{le+yl:y e G},

Let go such that ||go|| = 1 and set f(Ago) = A defined on the subspace Y: = {Agg: A € R}.

We apply Hahn-Banach lemma: X linear space and p: X — R continuous function such
that p(z +y) < p(z) + p(y) and p(Ax) = Ap(z) for all A > 0, =,y € X; let Y subspace of X
and f € Y* such that f(z) < p(z) for all x € Y. Then, there exists F' € X* extending f to
X such that F(z) < p(x) for all z € X.

Verify that the defined p is in the hypothesis of Hahn-Banach lemma.

Let F be the extention. Then F(g) > 0 for all g € G. Notice that p(—g) =0 for all g € G,
then if F'(g) < 0, then F(—g) > 0 which contradicts F(—g) < p(—g) = 0. If F(g) =0
then it is 0 on —g as well, therefore on some neighborhood of —g, because C' is open and
consequently a neighborhood of ¢ is in G. Consequently F' is 0 everywhere. Then it is
enough to set H = {x € F: Fx = 0}.

7. Decide whether following functionals on a normed linear space X are linear
and continuous. If so, determine their norm.

o0z —
(a) F: ($n>iez+ =i X =a
Resend: 1t is well defined, because >, 1/i? < cc. It is linear. Its norm is Y, 1/i%

(b) F: fes [ tf(t)dt, X = LP([0,1])

Resent: It is linear. It is continuous:
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Computation of norm: for p = 1 the sequence of funtions i2*~! show that the norm
is 1. For p = oo take the function constant 1, so the norm is 1/2.

For the general case we will need Holder inequality: for p,q € [1,00] such that 1/p +
1/q =1 then || fgll, < [Ifll,lgll, - Let f = t¥/?, then
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(¢) F:felim, o [, f(t")dt, X =C([0,1])

Resent: It is linear. It is continuous:
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Function f =1 shows that the norm is 1.
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