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All the vector spaces (also called linear spaces) are over the field R.
Definition: Let E be a normed linear space. A closed hyperplane is every set
of the form H = {x ∈ E : f(x) = α} where f ∈ E∗, f 6= 0 and α ∈ R. (This is the
same as translations of maximal proper subspaces).
Spaces and norms:

• C([0, 1]): continuous functions [0, 1] → R with norm ‖f‖ = max {|f(t)| : t ∈ [0, 1]}.

• c: convergent sequences with norm ‖xn‖ = sup {|xn| : n ∈ N}.

• c0: sequences convergent to 0, subspace of c.

• l∞: bounded sequences, same norm as in c.

• Lp: measurable functions on X with norm ‖f‖p =
(∫

|f |p dµ
)1/p. This is not

a norm, functions that are zero almost everywhere have norm zero.

• Lp: Lp modulo functions that are zero almost everywhere.

1. Find a function f : R → R such that |f(x)− f(y)| < |x− y| but f is not a
contraction.
Řešení: Consider the function f : R → R defined on unit lenght intervals [i−1, i] by sending
it to the interval [0, 1− 1/2i] for i = 1, . . . . For i odd we have that f(i− 1+ t) = (1− 1/2i)t

and for i even we have f(i − 1 + t) = (1 − 1/2i−1)(1 − t). We can verify that at the end
points it coincides and consequently it is well defined. We do the analogous symmetrically
for negative number. It satisfies the hypothesis: (1) for x, y in the same interval we have
that |f(x)−f(y)| = (1−1/2i)|t−t′| = (1−1/2i)|x−y|; (2) on consecutive intervals for i odd,
x = i−1+t and y = (i+1)−1+t′; we have that |f(x)−f(y)| ≤ |f(x)−f(i)|+|f(i)−f(y)| ≤
|x−i|+|i−y| = |x−y| ;(3) on non-consecutive intervals is immediate since |f(x)−f(y)| < 1.
The function f is not contraction since |f(i− 1)− f(i)| = 1− 1/2i which goes to 1.

2. Find a function f : R → R such that |f(x)− f(y)| < |x− y| but f has no
fixed point.
Řešení: Let f be the function defined in the first exercise. Its only fixed point is the 0, it is
enough to shift it by a little bit, say g(x) = f(x) + 1/8. This way in the interval [0, 1] the
image is strictly inside [0, 1] and for the remaining number it is below 2.

3. Show that every subspace of a normed linear space of finite dimension is closed.
Find a counterexample for a space of infinite dimension.
Řešení: Because any two normed linear spaces with the same dimension are topologically
isomorphic we can consider without loss of generality that our space is Rn. A subspace of
Rn is isomorphic to Rk for some k which is an intersection of hyperplanes and consequently
closed. For the counterexample, consider in c0 the subspace generated by elements ei, i.e.
(ei)j = 1 if i = j and 0 otherwise. Consider the sequence ai given by (ai)j = 1/j for j < i

and 0 otherwise. This sequence converges to (1/j)j∈N which is in c0 but not in the subspace.



4. Show that complement of every proper subspace of a normed linear space is
dense.
Řešení: Let W ⊆ V closed proper subspace and U = V \ W 6= ∅ because W is proper.
Let B be open ball, we want to verify that B ∩ U 6= ∅. Assume that it is not the case,
i.e. B ∩ U = ∅, then B = B(x, r) ⊆ W . Take y ∈ U 6= ∅, and take λ = r

2|x−y| , then
z = x + (y − x)λ ∈ B(x, r) ⊆ W , and consequently y = x + 1

λ (z − x) ∈ W , which is a
contradiction.

5. Show that unit ball in a Hilbert space of inifinite dimension is not compact.
Řešení: Consider an orthonormal basis. Every pair of elements have distance

√
2, i.e. no

convergent subsequence.

6. Prove Mazur theorem: Let C be an open convex subset of a normed linear
space E and z ∈ E \ C. Then there exists a closed hyperplane H ⊂ E such
that z ∈ H and H ∩ C = ∅.
Řešení: Without loss of generality assume that z = 0. Let G = {λc : c ∈ C, λ > 0} be the
cone over C. Define the function

p(x) : = inf{‖x+ y‖ : y ∈ G}.

Let g0 such that ‖g0‖ = 1 and set f(λg0) = λ defined on the subspace Y : = {λg0 : λ ∈ R}.
We apply Hahn-Banach lemma: X linear space and p : X → R continuous function such
that p(x+ y) ≤ p(x) + p(y) and p(λx) = λp(x) for all λ ≥ 0, x, y ∈ X; let Y subspace of X
and f ∈ Y ∗ such that f(x) ≤ p(x) for all x ∈ Y . Then, there exists F ∈ X∗ extending f to
X such that F (x) ≤ p(x) for all x ∈ X.
Verify that the defined p is in the hypothesis of Hahn-Banach lemma.

Let F be the extention. Then F (g) > 0 for all g ∈ G. Notice that p(−g) = 0 for all g ∈ G,
then if F (g) < 0, then F (−g) > 0 which contradicts F (−g) ≤ p(−g) = 0. If F (g) = 0

then it is 0 on −g as well, therefore on some neighborhood of −g, because C is open and
consequently a neighborhood of g is in G. Consequently F is 0 everywhere. Then it is
enough to set H = {x ∈ E : Fx = 0}.

7. Decide whether following functionals on a normed linear space X are linear
and continuous. If so, determine their norm.

(a) F : (xn)i∈Z+ 7→
∑∞

i=1
xi

i2
, X = c0

Řešení: It is well defined, because
∑

i 1/i
2 < ∞. It is linear. Its norm is

∑
i 1/i

2.

(b) F : f 7→
∫ 1

0
tf(t) dt, X = Lp([0, 1])

Řešení: It is linear. It is continuous:∣∣∣∣∫ 1

0

tf(t)dt
∣∣∣∣ ≤ ∫ 1

0

t |f(t)| dt ≤
∫ 1

0

|f(t)| dt = ‖f‖1 ≤ ‖f‖p

Computation of norm: for p = 1 the sequence of funtions ixi−1 show that the norm
is 1. For p = ∞ take the function constant 1, so the norm is 1/2.
For the general case we will need Hölder inequality: for p, q ∈ [1,∞] such that 1/p+
1/q = 1 then ‖fg‖1 ≤ ‖f‖p ‖g‖q . Let f = tq/p, then

‖F‖ =
∥∥∥tq/p∥∥∥

p
‖t‖q /

∥∥∥tq/p∥∥∥
p
=

q

√∫ 1

0

tq =

(
1

1 + q

)1/q

=

(
p− 1

2p− 1

) p−1
p



(c) F : f 7→ limn→∞
∫ 1

0
f(tn) dt, X = C([0, 1])

Řešení: It is linear. It is continuous:∣∣∣∣ lim
n→∞

∫ 1

0

f(tn)dt
∣∣∣∣ ≤ lim

n→∞

∫ 1

0

max f dt = ‖f‖

Function f = 1 shows that the norm is 1.
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