Mathematics++

Practicals 5 – Functional analysis

May 16th, 2022

All the vector spaces (also called linear spaces) are over the field \mathbb{R} .

Definition: Let *E* be a normed linear space. A **closed hyperplane** is every set of the form $H = \{x \in E : f(x) = \alpha\}$ where $f \in E^*$, $f \neq 0$ and $\alpha \in \mathbb{R}$. (This is the same as translations of maximal proper subspaces).

Spaces and norms:

- $\mathcal{C}([0,1])$: continuous functions $[0,1] \to \mathbb{R}$ with norm $||f|| = \max\{|f(t)| : t \in [0,1]\}$.
- c: convergent sequences with norm $||x_n|| = \sup \{|x_n| : n \in \mathbb{N}\}.$
- c_0 : sequences convergent to 0, subspace of c.
- l^{∞} : bounded sequences, same norm as in c.
- \mathcal{L}^p : measurable functions on X with norm $||f||_p = (\int |f|^p d\mu)^{1/p}$. This is not a norm, functions that are zero almost everywhere have norm zero.
- L^p : \mathcal{L}^p modulo functions that are zero almost everywhere.
- 1. Find a function $f \colon \mathbb{R} \to \mathbb{R}$ such that |f(x) f(y)| < |x y| but f is not a contraction.
- 2. Find a function $f : \mathbb{R} \to \mathbb{R}$ such that |f(x) f(y)| < |x y| but f has no fixed point.
- 3. Show that every subspace of a normed linear space of finite dimension is closed. Find a counterexample for a space of infinite dimension.
- 4. Show that complement of every proper subspace of a normed linear space is dense.
- 5. Show that unit ball in a Hilbert space of inifinite dimension is not compact.
- 6. Prove Mazur theorem: Let C be an open convex subset of a normed linear space E and $z \in E \setminus C$. Then there exists a closed hyperplane $H \subset E$ such that $z \in H$ and $H \cap C = \emptyset$.
- 7. Decide whether following functionals on a normed linear space X are linear and continuous. If so, determine their norm.
 - (a) $F: (x_n)_{i \in \mathbb{Z}^+} \mapsto \sum_{i=1}^{\infty} \frac{x_i}{i^2}, X = c_0$
 - (b) $F: f \mapsto \int_0^1 t f(t) dt, X = L^p([0,1])$
 - (c) $F: f \mapsto \lim_{n \to \infty} \int_0^1 f(t^n) \, \mathrm{d}t, \ X = \mathcal{C}([0, 1])$