Mathematics++

Practicals 4 – Measure concentration

April 25th, 2022

Theorem 1 (Measure concentration theorem for spheres). For all $t \ge 0$ and $A \subseteq S^{n-1}$ with $\mu(A) \ge 1/2$ we have that $1 - \mu(A_t) \le 2e^{-t^2n/2}$.

Theorem 2 (Concentration of Lipschitz functions - Levy's lemma). Let $f: S^{n-1} \to \mathbb{R}$ be 1-Lipschitz, then there exists $m \in \mathbb{R}$ such that for all $t \in (0, 1]$ we have that

$$\mu\{x \in S^{n-1} \colon f(x) \notin [m-t, m+t]\} \le 4e^{-t^2 n/2}$$

1. Given $t \in [-1, 1]$, let C(t) be the spherical cap of height 1 - t. That is,

$$C(t) := \left\{ x \in S^{n-1} : x_1 \ge t \right\}.$$

For $t \in [0,1]$ prove that $\mu(C(t)) \leq e^{-t^2 n/2}$, where $\mu(C(t)) := \lambda(\tilde{C}(t))/\lambda(B^n)$ and $\tilde{C}(t)$ is the cone over C(t) with apex in the origin. *Hint:* Show that $\tilde{C}(t)$ is a subset of a suitable ball. (For small t try to get radius $\sqrt{1-t^2}$. For larger t use another ball.)

- 2. Deduce the measure concentration for the dot product of two random unit vectors in \mathbb{R}^n .
- 3. Estimate the probability that a random line passing through origin intersects the unit ball centered at $(2, 0, 0, \ldots, 0)$.
- 4. Using Lévy's lemma, show that the expected value $\int_{S^{n-1}} f(x) d\mu(x)$ of a 1-Lipschitz function $f: S^{n-1} \to \mathbb{R}$ has distance at most $O(1/\sqrt{n})$ from the median.