Mathematics++
 Practicals 3 - Minkowski Sum and Volume in High Dimension

April 11, 2022

Definition: Let $A, B \subseteq \mathbb{R}^{n}$. The Minkowski sum is

$$
A \oplus B:=\{a+b: a \in A, b \in B\}
$$

1. Determine Minkowski sum (in \mathbb{R}^{2}) of sets $[0,1] \times\{0\}$ and $\{(x, x): x \in[0,1]\}$.
2. Determine whether Minkowski sum of balls is a ball.
3. Determine whether Minkowski sum of ellipsiods (where ellipsiod is a linear transformation of a ball) is an ellipsoid.
4. Show that Minkowski sum of convex sets is convex. Does the implication in the other direction hold?
5. Show that Minkowski sum of compact sets is compact.
6. Show that for every $V \subset \mathbb{R}^{n}$ the following holds:

$$
\operatorname{conv}(V) \subseteq \bigcup_{v \in V} B\left(\frac{1}{2} v, \frac{1}{2}\|v\|\right)
$$

7. Show that covex hull of k points contained in a ball $B \subseteq \mathbb{R}^{n}$ has volume at most $\frac{k}{2^{n}} \lambda(B)$.
Hint: Use previous excercise.
