Mathematics++

Problem set 5 - Functional analysis
Hints: June 6th, 2022. Deadline: June 13th, 2022. Send solutions to dbulavka+mpp@kam.mff.cuni.cz.

All the vector spaces (also called linear spaces) are over the field \mathbb{R}.
Definition A (topological) dual of a normed linear space E is the space of all bounded linear functions $E \rightarrow \mathbb{R}$ (so called functionals) together with the norm

$$
\|F\|:=\sup \left\{|F x|:\|x\|_{E} \leq 1\right\}
$$

and we denote the dual space E^{*}.
Theorem (Hahn-Banach): Let $f \in M^{*}$ be a contious linear function on M which is a subspace of a normed linear space E. Then there exists $F \in E^{*}$ such that $F=f$ on M and $\|F\|_{E}=\|f\|_{M}$.
Theorem (Fréchet-Riesz): Let L be a continous linear function on Hilbert space H. Then there exists excatly one $a \in H$ such that $L(x)=\langle x, a\rangle \forall x \in H$. Moreover $\|L\|=\|a\|$.

1. Let V be a linear space and $B \subseteq V$ its symmetric convex subset such that intersetion of B with every subspace of dimension 1 (which are exaclty the sets $\{\lambda x: \lambda \in \mathbb{R}\}$ for a fixed $x \neq 0$) is a closed interval of finite positive length. We define

$$
\|x\|_{B}:=\min \{k \geq 0: x \in k B\} .
$$

Prove that $\|\cdot\|_{B}$ is a norm on V, and also that every norm on V can be defined with a suitable B.
2. Given a linear space W with inner product show that:

$$
\begin{equation*}
\forall S \subseteq W: \overline{\langle S\rangle}=\left(S^{\perp}\right)^{\perp} \tag{4}
\end{equation*}
$$

3. Let X be the space of continous real functions on $[0,1]$. Show that no two norms $\|.\|_{p}$ for $p \in[1, \infty]$ are equivalent on this space.
4. Decide whether the following operators on a space X are linear and continuous. If so, calculate their norm $\left(\|L\|:=\sup \left\{\|L x\|_{X}:\|x\|_{X} \leq 1\right\}\right)$:
(a) $L f(t):=f\left(t^{3}\right), X=\mathcal{C}([0,1])$
(b) $L f(t):=f\left(t^{3}\right), X=L^{2}([0,1])$
(c) $L\left(x_{n}\right)_{i \in \mathbb{N}}:=\left(0, x_{0}, x_{1}, x_{2}, \ldots\right), X=\ell^{1}$
(d) $L\left(x_{n}\right)_{i \in \mathbb{N}}:=\left(x_{1}, x_{2}, x_{3}, \ldots\right), X=\ell^{1}$
5. Prove the following geometric version of Hahn-Banach theorem: Let A and B be non-empty open disjoint convex subsets of a normed linear space E. Then there exists (nonzero) $f \in E^{*}$ and $\alpha \in \mathbb{R}$ such that $A \subset\{x \in E: f(x)>\alpha\}$ and $B \subset\{x \in E: f(x)<\alpha\}$.
6. Show that an orthonormal basis of a Hilbert space of infinite dimension cannot also be its algebraic (also known as Hamel) basis. Moreover show that algebraic basis of a Hilbert space of inifinite dimension is always uncountable.
