Mathematics++

Problem set 4 – Measure Concentration

Hints: May 16th, 2022. Deadline: May 23th, 2022. Send solutions to dbulavka+mpp@kam.mff.cuni.cz.

- 1. Let B and B' be unit balls in \mathbb{R}^n and let d(n) be the distance between the centers of B and B' so that the probability that a uniformly randomly chosen point of B belongs to B' with probability 1 %. Find some explicit upper bound on d(n) tending to 0 while n tends to infinity. [3]
- 2. Consider the unit cube $[0, 1]^n$, *n* large, and take the hyperplane *h* given by the equation $x_1 + \cdots + x_n = n/2$. Estimate roughly the width of a parallel strip along *h* containing 99% of the volume of the cube. [3]
- 3. Let P be a convex polytope in \mathbb{R}^n which is the intersection of N halfspaces. Let us assume that P contains the unit ball. Show that

$$\lambda(P) \ge \left(C\frac{n}{\ln N}\right)^{n/2}\lambda(B^n)$$

for some constant C > 0. *Hint:* Consider a sphere such that the complement of P covers exactly one half of it's surface area. [5*]

- 4. A set $N \subseteq S^{n-1}$ is called ϵ -dense if every $x \in S^{n-1}$ is at distance at most ϵ from some $y \in N$.
 - (a) Show that any 1-dense set in S^{n-1} has at least $\frac{1}{2}e^{n/8}$ points. [2]
 - (b) Show that for every $\delta \in (0, 1]$ there is δ -dense set in S^{n-1} of size at most $(4/\delta)^n$. [2]
- 5. Construct a continuous function $f: S^{n-1} \to [0,1]$, which is not concentrated. That is, $\forall x \in [0,1]$, the set $f^{-1}([x-\frac{1}{3},x+\frac{1}{3}])$ has measure at most $\frac{2}{3}$. [3]
- 6. Derive the measure concentration theorem for spheres from Levy's lemma, perhaps with a worse constant in front of $e^{-t^2n/2}$. [2]