Mathematics++

Problem set 4 - Measure Concentration
Hints: May 16th, 2022. Deadline: May 23th, 2022. Send solutions to dbulavka+mpp@kam.mff.cuni.cz.

1. Let B and B^{\prime} be unit balls in \mathbb{R}^{n} and let $d(n)$ be the distance between the centers of B and B^{\prime} so that the probability that a uniformly randomly chosen point of B belongs to B^{\prime} with probability 1%. Find some explicit upper bound on $d(n)$ tending to 0 while n tends to infinity.
2. Consider the unit cube $[0,1]^{n}, n$ large, and take the hyperplane h given by the equation $x_{1}+\cdots+x_{n}=n / 2$. Estimate roughly the width of a parallel strip along h containing 99% of the volume of the cube.
3. Let P be a convex polytope in \mathbb{R}^{n} which is the intersection of N halfspaces. Let us assume that P contains the unit ball. Show that

$$
\lambda(P) \geq\left(C \frac{n}{\ln N}\right)^{n / 2} \lambda\left(B^{n}\right)
$$

for some constant $C>0$. Hint: Consider a sphere such that the complement of P covers exactly one half of it's surface area.
4. A set $N \subseteq S^{n-1}$ is called ϵ-dense if every $x \in S^{n-1}$ is at distance at most ϵ from some $y \in N$.
(a) Show that any 1-dense set in S^{n-1} has at least $\frac{1}{2} e^{n / 8}$ points.
(b) Show that for every $\delta \in(0,1]$ there is δ-dense set in S^{n-1} of size at most $(4 / \delta)^{n}$.
5. Construct a continuous function $f: S^{n-1} \rightarrow[0,1]$, which is not concentrated. That is, $\forall x \in[0,1]$, the set $f^{-1}\left(\left[x-\frac{1}{3}, x+\frac{1}{3}\right]\right)$ has measure at most $\frac{2}{3}$.
6. Derive the measure concentration theorem for spheres from Levy's lemma, perhaps with a worse constant in front of $e^{-t^{2} n / 2}$.

