Mathematics++
 Problem set 3 - Convex geometry

Hints: April 25th, 2022. Deadline: May 2nd, 2022. Send solutions to dbulavka+mpp@kam.mff.cuni.cz.

Prékopa-Leindler inequality: Let $t \in(0,1)$ and let $f, g, h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be measurable, non-negative, bounded functions with a finite integral over \mathbb{R}^{n}. Suppose that $h((1-t) x+t y) \geq f(x)^{1-t} g(y)^{t}$ for all $x, y \in \mathbb{R}^{n}$. Then

$$
\int_{\mathbb{R}^{n}} h \geq\left(\int_{\mathbb{R}^{n}} f\right)^{1-t}\left(\int_{\mathbb{R}^{n}} g\right)^{t}
$$

Log-concavity: A non-negative function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called log-concave if it satisfies

$$
f((1-t) x+t y) \geq f(x)^{1-t} f(y)^{t} \text { for all } t \in(0,1), x, y \in \mathbb{R}^{n}
$$

Edge expansion: Edge expansion of a graph $G=(V, E)$ is

$$
\min \left\{\frac{e(A, V \backslash A)}{|A|}: A \subseteq V, 1 \leq|A| \leq \frac{1}{2}|V|\right\}
$$

where $e(A, B)$ is the number of edges of G going between A and B.

1. Prove the Prékopa-Leindler inequality using the Prékopa-Leindler inequality with the additional assumption that $\sup h=\sup f=\sup g=1$.
Nápověda: Consider $f^{\prime}(x)=\frac{f(x)}{\sup (f)}$ and $g^{\prime}(y)=\frac{g(y)}{\sup (g)}$. First show the case that $\sup f=$ $\sup g=1$, without the restriction on $\sup h$, implies the general Prékopa-Leindler inequality. Next show that $\sup h=\sup f=\sup g=1$ implies the case $\sup f=\sup g=1$. For this notice that h only has supremum at least 1 , so we can truncate h if it goes higher, i.e. define $h^{\prime}(x)=\min \{h(x), 1\}$.
2. Show that a positive function $f(x)$ is log-concave if and only if the function $\log (f(x))$ is concave.
Nápověda: Verify the definition.
3. Show that log-concave functions are closed under products, projections and convolutions.
The projection of a function $f: \mathbb{R}^{m+n} \rightarrow \mathbb{R}$ is a function $g: \mathbb{R}^{m} \rightarrow \mathbb{R}$ defined as $g(x):=\int_{\mathbb{R}^{n}} f(x, y) \mathrm{d} y$, and the convolution is $(f * g)(x):=\int_{\mathbb{R}^{n}} f(x-y) g(y) \mathrm{d} y$ for $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Nápověda: The first part follows from the definition. For the second and third use PrékopaLeindler inequality.
4. Let \mathcal{G} be an (infinite) class of graphs such that its members have maximum degree at most d and edge expansion at least $c_{0}>0$. Show that there exists $c>0$ such that for all $G \in \mathcal{G}$ the following holds

$$
1-\frac{\left|A_{t}\right|}{|V(G)|} \leq e^{-c t}
$$

for every $A \subseteq V(G)$ such that $|A| \geq \frac{1}{2}|V(G)|$ and $t \geq 0$. A_{t} is the set of all vertices with distance at most t from some element of A (in particular $\left.A_{t} \supseteq A\right)$.
Nápověda: Consider $B=V \backslash A_{t}$ and B_{t}.
5. Let $A, B \subseteq \mathbb{R}^{d}$ be convex sets. Prove that:

$$
\operatorname{conv}((\{0\} \times A) \cup(\{1\} \times B))=\bigcup_{t \in[0,1]}(\{t\} \times((1-t) A \oplus t B))
$$

Nápověda: If C and D are convex, then each point of $\operatorname{conv}(C \cup D)$ lies on some line joining a point from C and D.

