Mathematics++

Problem set 2 – Measure and integral

hints after April 4, 2022, solutions due April 11, 2022 before the lecture Send your solutions to chmel@kam.mff.cuni.cz

- 1. Let (X, \mathcal{S}, μ) be a measurable space and $f, g : X \to \mathbb{R}$ be measurable functions. Prove that if $\int g < \infty$ and $|f| \le g$ almost everywhere, then $\int f < \infty$. [3]
- 2. (a) Is there a function $f : [0,1] \to \mathbb{R}$ such that the Lebesgue integral $\int_0^1 f$ is finite (in particular it exists) but the Newton integral $\int_0^1 f$ does not exist? [2]
 - (b) Is there a function $f : [0, \infty) \to \mathbb{R}$ such that the Newton integral $\int_0^\infty f$ is finite (in particular exists) but the Lebesgue integral $\int_0^\infty f$ does not exist? [3]
- 3. Construct a sequence of continuous function $f_n: [0,1] \to [0,1]$ such that $\lim_{n\to\infty} \int_0^1 f_n(x) \, \mathrm{d}x = 0$ but the sequence $(f_n(x))_n$ does not converge for any $x \in [0,1]$. [4*]
- 4. Show that the function $f: (0,1) \times (0,1) \to \mathbb{R}$ defined as

$$f(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}$$

 $[4^*]$

is not (Lebesgue) integrable on $(0, 1) \times (0, 1)$.

- 5. Let $f : \mathbb{R}^k \to \mathbb{R}$ be bounded Lebesgue mesuarable function. Prove that there are Borel functions $g, h : \mathbb{R}^k \to \mathbb{R}$ such that g = h almost everywhere and $g(x) \le f(x) \le h(x)$ for every $x \in \mathbb{R}^k$. [4]
- 6. Prove or disprove the following claims:
 - (a) Let $f:[0,1] \to \mathbb{R}$ be a non-negative, bounded and measurable function. Then,

$$\int_{[0,1]} f \,\mathrm{d}\mu = \inf \int_{[0,1]} \varphi \,\mathrm{d}\mu,$$

where the infimum is taken over all simple measurable functions φ with $f \leq \varphi$. [2]

(b) Let $f : \mathbb{R} \to \mathbb{R}$ be a non-negative, bounded and measurable function. Then,

$$\int_{\mathbb{R}} f \, \mathrm{d}\mu = \inf \int_{\mathbb{R}} \varphi \, \mathrm{d}\mu,$$

where the infimum is taken over all simple measurable functions φ with $f \leq \varphi$. [2]