Mathematics++

Problem set 2 - Measure and integral

hints after April 4, 2022, solutions due April 11, 2022 before the lecture Send your solutions to chmel@kam.mff.cuni.cz

1. Let (X, \mathcal{S}, μ) be a measurable space and $f, g: X \rightarrow \mathbb{R}$ be measurable functions. Prove that if $\int g<\infty$ and $|f| \leq g$ almost everywhere, then $\int f<\infty$.
2. (a) Is there a function $f:[0,1] \rightarrow \mathbb{R}$ such that the Lebesgue integral $\int_{0}^{1} f$ is finite (in particular it exists) but the Newton integral $\int_{0}^{1} f$ does not exist?
(b) Is there a function $f:[0, \infty) \rightarrow \mathbb{R}$ such that the Newton integral $\int_{0}^{\infty} f$ is finite (in particular exists) but the Lebesgue integral $\int_{0}^{\infty} f$ does not exist?
3. Construct a sequence of continuous function $f_{n}:[0,1] \rightarrow[0,1]$ such that $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) \mathrm{d} x=0$ but the sequence $\left(f_{n}(x)\right)_{n}$ does not converge for any $x \in[0,1]$.
4. Show that the function $f:(0,1) \times(0,1) \rightarrow \mathbb{R}$ defined as

$$
f(x, y)=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
$$

is not (Lebesgue) integrable on $(0,1) \times(0,1)$.
5. Let $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$ be bounded Lebesgue mesuarable function. Prove that there are Borel functions $g, h: \mathbb{R}^{k} \rightarrow \mathbb{R}$ such that $g=h$ almost everywhere and $g(x) \leq f(x) \leq h(x)$ for every $x \in \mathbb{R}^{k}$.
6. Prove or disprove the following claims:
(a) Let $f:[0,1] \rightarrow \mathbb{R}$ be a non-negative, bounded and measurable function. Then,

$$
\int_{[0,1]} f \mathrm{~d} \mu=\inf \int_{[0,1]} \varphi \mathrm{d} \mu,
$$

where the infimum is taken over all simple measurable functions φ with $f \leq \varphi$.
(b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a non-negative, bounded and measurable function. Then,

$$
\int_{\mathbb{R}} f \mathrm{~d} \mu=\inf \int_{\mathbb{R}} \varphi \mathrm{d} \mu,
$$

where the infimum is taken over all simple measurable functions φ with $f \leq \varphi$.

