Proof-number search based solver for the Sprouts game

FACULTY OF MATHEMATICS AND PHYSICS Charles University

Bc. Tomáš Čížek

Supervisor: Mgr. Martin Schmid, Ph.D.

Advisor: doc. RNDr. Martin Balko, Ph.D.

- Starts with *n* initial spots.
- Players alternate in connecting spots by curves (cycles are allowed).
- Curves cannot cross.
- A new spot is added along a newly drawn curve.
- Each spot can be incident to at most three curves.
- The first player with no move loses.

- Starts with *n* initial spots.
- Players alternate in connecting spots by curves (cycles are allowed).
- Curves cannot cross.
- A new spot is added along a newly drawn curve.
- Each spot can be incident to at most three curves.
- The first player with no move loses.

- Starts with *n* initial spots.
- Players alternate in connecting spots by curves (cycles are allowed).
- Curves cannot cross.
- A new spot is added along a newly drawn curve.
- Each spot can be incident to at most three curves.
- The first player with no move loses.

- Starts with *n* initial spots.
- Players alternate in connecting spots by curves (cycles are allowed).
- Curves cannot cross.
- A new spot is added along a newly drawn curve.
- Each spot can be incident to at most three curves.
- The first player with no move loses.

- Starts with *n* initial spots.
- Players alternate in connecting spots by curves (cycles are allowed).
- Curves cannot cross.
- A new spot is added along a newly drawn curve.
- Each spot can be incident to at most three curves.
- The first player with no move loses.

- Starts with *n* initial spots.
- Players alternate in connecting spots by curves (cycles are allowed).
- Curves cannot cross.
- A new spot is added along a newly drawn curve.
- Each spot can be incident to at most three curves.
- The first player with no move loses.

The early beginnings

- Designed by British mathematicians J. Conway and M. Paterson in 1967.
- Easy to play, difficult to analyze.

 Many attempts to determine outcomes of Sprouts positions with *n* initial spots under the perfect play (weak solutions).

www.princeton.edu

www.alchetron.com/Mike-Paterson

The early beginnings

- Designed by British mathematicians J. Conway and M. Paterson in 1967.
- Easy to play, difficult to analyze.

 Many attempts to determine outcomes of Sprouts positions with *n* initial spots under the perfect play (weak solutions).

n	outcome	author
1	L	Conway
2	\mathbf{L}	Conway
3	W	Conway
4	W	Mollison
5	W	Mollison
6	\mathbf{L}	Mollison
7	?	?
8	?	?
9	?	?
10	?	?

Searching trees computationally

- Applegate, Jacobson, and Sleator (1991) [1] created the first computer solver for Sprouts.
- A necessity of a state representation (planar embeddings).
- Using a simple Alpha-Beta pruning for search.

0.2AB|1a2a.1aABa+12.AB|AB

Searching trees computationally

- Applegate, Jacobson, and Sleator (1991) [1] created the first computer solver for Sprouts.
- A necessity of a state representation (planar embeddings).
- Using a simple Alpha-Beta pruning for search.

- The famous Sprouts conjecture was formed.
 - *n*-spot position is winning \leftrightarrow *n* \equiv 3, 4, 5 (mod 6).

n	outcome	author
1	L	Conway
2	\mathbf{L}	Conway
3	W	Conway
4	W	Mollison
5	W	Mollison
6	\mathbf{L}	Mollison
7	${ m L}$	AJS
8	\mathbf{L}	AJS
9	W	AJS
10	W	AJS
11	W	AJS
12	\mathbf{L}	Purinton
13	\mathbf{L}	Purinton
14	\mathbf{L}	Purinton
15	?	?

Game trees grow extremely fast

Grundy numbers

- Lemoine and Viennot (2007) [2] introduced a solver Glop utilizing the Sprague–Grundy theorem.
- Analyze independent parts (lands) separately:
 - Compute Grundy number (nimber) gn(L) for each land L.
 - $gn(L_1 + L_2) = gn(L_1) \bigoplus gn(L_2)$.
 - $L_1 + L_2$ is loss $\leftrightarrow gn(L) = 0$.
- \rightarrow More complicated NAND trees with Grundy numbers.

Grundy numbers

- Lemoine and Viennot (2007) [2] introduced a solver Glop utilizing the Sprague–Grundy theorem.
- Analyze independent parts (lands) separately:
 - Compute Grundy number (nimber) gn(L) for each land L.
 - $gn(L_1 + L_2) = gn(L_1) \bigoplus gn(L_2)$.
 - $L_1 + L_2$ is loss $\leftrightarrow gn(L) = 0$.

→ More complicated NAND trees with Grundy numbers.

n	out.	auth.	n	out.	auth.	n	out.	auth.
1	\mathbf{L}	Conway	19	\mathbf{L}	Glop '07	37	?	?
2	\mathbf{L}	Conway	20	\mathbf{L}	Glop '07	38	?	?
3	W	Conway	21	W	Glop '07	39	?	?
4	W	Mollison	22	W	Glop '07	40	W	Glop '07
5	W	Mollison	23	W	Glop '07	41	W	Glop '07
6	L	Mollison	24	\mathbf{L}	Glop '07	42	?	?
7	\mathbf{L}	AJS	25	\mathbf{L}	Glop '07	43	?	?
8	\mathbf{L}	AJS	26	\mathbf{L}	Glop '07	44	?	?
9	W	AJS	27	W	Glop '07	45	?	?
10	W	AJS	28	W	Glop '07	46	?	?
11	W	AJS	29	W	Glop '07	47	W	Glop '07
12	\mathbf{L}	Purinton	30	\mathbf{L}	Glop '07	48	?	?
13	L	Purinton	31	\mathbf{L}	Glop '07	49	?	?
14	\mathbf{L}	Purinton	32	\mathbf{L}	Glop '07	50	?	?
15	W	Glop '07	33	?	?	51	?	?
16	W	Glop '07	34	W	Glop '07	52	?	?
17	W	Glop '07	35	W	Glop '07	53	?	?
18	L	Glop '07	36	?	?	54	?	?

Largely imbalanced game trees

Proof-number search

- Alpha-beta pruning can get stuck in difficult subtrees if the heuristic was wrong.
- Explore subtrees with potentially shortest proof → Proof-number search (PNS) [4]:
 - Each node N is associated with a proof number *pn(N)* and a disproof number *dn(N)*.
 - Initialized heuristically in leaves.
 - Aggregated from children in expanded nodes.
 - Expand the most-proving node (MPN) and update.
- Must be adapted for NAND trees with Grundy numbers!
 - A basic variant by Lemoine (and Viennot) in Glop [3].

Proof-number search

- Alpha-beta pruning can get stuck in difficult subtrees if the heuristic was wrong.
- Explore subtrees with potentially shortest proof → Proof-number search (PNS) [4]:
 - Each node N is associated with a proof number *pn(N)* and a disproof number *dn(N)*.
 - Initialized heuristically in leaves.
 - Aggregated from children in expanded nodes.
 - Expand the most-proving node (MPN) and update.
- Must be adapted for NAND trees with Grundy numbers!
 - A basic variant by Lemoine (and Viennot) in Glop [3].

n	out.	auth.	n	out.	auth.	n	out.	auth.
1	L	Conway	19	\mathbf{L}	Glop '07	37	L	Glop '10
2	\mathbf{L}	Conway	20	\mathbf{L}	Glop '07	38	\mathbf{L}	Glop '10
3	W	Conway	21	W	Glop '07	39	W	Glop '11
4	W	Mollison	22	W	Glop '07	40	W	Glop '07
5	W	Mollison	23	W	Glop '07	41	W	Glop '07
6	\mathbf{L}	Mollison	24	\mathbf{L}	Glop '07	42	\mathbf{L}	Glop '11
7	\mathbf{L}	AJS	25	\mathbf{L}	Glop '07	43	\mathbf{L}	Glop '11
8	\mathbf{L}	AJS	26	\mathbf{L}	Glop '07	44	\mathbf{L}	Glop '11
9	W	AJS	27	W	Glop '07	45	?	?
10	W	AJS	28	W	Glop '07	46	W	Glop '10
11	W	AJS	29	W	Glop '07	47	W	Glop '07
12	L	Purinton	30	\mathbf{L}	Glop '07	48	?	?
13	L	Purinton	31	\mathbf{L}	Glop '07	49	?	?
14	L	Purinton	32	\mathbf{L}	Glop '07	50	?	?
15	W	Glop '07	33	W	Glop '10	51	?	?
16	W	Glop '07	34	W	Glop '07	52	?	?
17	W	Glop '07	35	W	Glop '07	53	W	Glop '10
18	\mathbf{L}	Glop '07	36	\mathbf{L}	Glop '10	54	?	?

Depth-first Proof-number search

- The space complexity of PNS is too large (the whole tree is stored in memory).
- Depth-first Proof-number search (df-pn) [5]:
 - A recursive and memory-efficient variant of PNS (logarithmic space complexity).
 - Two thresholds $pt(N_{curr})$ and $dt(N_{curr})$ to guarantee MPN in the subtree of N_{curr} .
 - Combined with a transposition table (replacing policy) and a nimber database.

Depth-first Proof-number search

- The space complexity of PNS is too large (the whole tree is stored in memory).
- Depth-first Proof-number search (df-pn) [5]:
 - A recursive and memory-efficient variant of PNS (logarithmic space complexity).
 - Two thresholds $pt(N_{curr})$ and $dt(N_{curr})$ to guarantee MPN in the subtree of N_{curr} .
 - Combined with a transposition table (replacing policy) and a nimber database.
- The update rules for N_{next}:

$$pt(N_{next}) = dt(N_{curr}) - dn_0(N_{curr}) + pn_0(N_{next}), dt(N_{next}) = \min\{pt(N_{curr}), dn(N_{next_2}) + 1\}.$$

Depth-first Proof-number search

- The space complexity of PNS is too large (the whole tree is stored in memory).
- Depth-first Proof-number search (df-pn) [5]:
 - A recursive and memory-efficient variant of PNS (logarithmic space complexity).
 - Two thresholds $pt(N_{curr})$ and $dt(N_{curr})$ to guarantee MPN in the subtree of N_{curr} .
 - Combined with a transposition table (replacing policy) and a nimber database.
- Extended update rules for *N*_{next} with Grundy numbers:

$$pt(N_{next}) = dt(N_{curr}) - dn_0(N_{curr}) + pn_0(N_{next}),$$

$$dt(N_{next}) = \min\{pt(N_{curr}), dn(N_{next_2}) + 1\},$$

$$mint(N_{next}) = mint(N_{curr}),$$

$$pS(N_{next}) = dS(N_{curr}) + dn_0(N_{curr}) - pn_0(N_{next}),$$

$$dS(N_{next}) = pS(N_{curr}).$$

$$pt(N_{next}) = dt(N_{next}) = \infty,$$

$$mint(N_{next}) = \text{thMins}_{curr} - \text{otherMins}_{curr,next},$$

$$pS(N_{next}) = dS(N_{next}) = 0,$$

Our sequential solver SPOTS

• Approximately 18 times faster than Glop + memory advantageous df-pn.

Parallel Proof-number search

- Adapting PNS for large computational cluster with distributed memory.
- Master-workers scheme:

1st improvement — share results

- Share Grundy numbers with other workers to prevent search overhead:
 - <u>Small number</u> no additional communication overhead.
 - <u>Highly reusable</u> a land may occur in many positions.

	Sharing	1	2	4	8	Eff.
Iterations Time	×	393k 374 s	843k 371 s	1,470k 281 s	2,180k 190 s	36%
Iterations Time	\checkmark	398k 374 s	572k 259 s	818k 174 s	847k 81 s	61%

2^{nd} improvement — P^2PNS

- Parallelize the workers themselves rather than adding more of them:
 - Reduced communication overhead, more relevant work, local memory utilization.

Scaling efficiency of P²PNS

- Reaching roughly 100x speedup (480 cores) compared to the sequential df-pn.
- Much better scaling efficiency than other parallel PNS:

Current PPN² search [6] 35% on 32 CPU cores

Our P²PNS

34% on 480 CPU cores

 \rightarrow Addresses the scaling problem of PNS posed by Kishimoto et al. [7].

P ² PNS	Iterations	Time	Scaling	Efficiency	Speedup
df-pn	3,150k	$47.5~\mathrm{min}$			1.00x
1 core	3,650k	$78.0 \min$	1.00x	100%	0.61x
$2 {\rm cores}$	3,680k	$39.3 \min$	1.98x	99%	$1.21 \mathrm{x}$
4 cores	3,260k	$18.8 \min$	4.14x	104%	$2.53 \mathrm{x}$
8 cores	4,190k	$11.6 \min$	6.72x	84%	4.09x
$16 \mathrm{cores}$	3,760k	$294 \mathrm{\ s}$	15.9x	99%	9.70x
32 cores	4,492k	$178 \ s$	26.3x	81%	$16.0 \mathrm{x}$
64 cores	4,120k	$88.4~\mathrm{s}$	52.9x	83%	32.2x
$128 \mathrm{cores}$	5,710k	$54.1 \mathrm{~s}$	86.5x	68%	$52.7 \mathrm{x}$
$256 \mathrm{cores}$	7,290k	$36.6 \mathrm{~s}$	128x	50%	$78.3 \mathrm{x}$
$480 \ cores$	8,710k	$28.1 \mathrm{~s}$	167x	34%	101x
960 cores	13,500k	$21.4~\mathrm{s}$	219x	23%	133x

Resulting solver

- SPOTS roughly 2800x faster (480 cores) than Glop.
- \rightarrow 1 day of SPOTS \approx 8 years of Glop

Resulting solver

- SPOTS roughly 2800x faster (480 cores) than Glop.
- \rightarrow 1 day of SPOTS \approx 8 years of Glop

• Outcome of 47 *n*-spot positions known until now.

n	out.	auth.	n	out.	auth.	n	out.	auth.
1	L	Conway	36	L	Glop '10	71	?	?
2	\mathbf{L}	Conway	37	\mathbf{L}	Glop '10	72	?	?
3	W	Conway	38	\mathbf{L}	Glop '10	73	?	?
4	W	Mollison	39	W	Glop '11	74	?	?
5	W	Mollison	40	W	Glop '07	75	?	?
6	\mathbf{L}	Mollison	41	W	Glop '07	76	?	?
7	\mathbf{L}	AJS	42	\mathbf{L}	Glop '11	77	?	?
8	\mathbf{L}	AJS	43	\mathbf{L}	Glop '11	78	?	?
9	W	AJS	44	\mathbf{L}	Glop '11	79	?	?
10	W	AJS	45	?	?	80	?	?
11	W	AJS	46	W	Glop '10	81	?	?
12	\mathbf{L}	Purinton	47	W	Glop '07	82	?	?
13	\mathbf{L}	Purinton	48	?	?	83	?	?
14	\mathbf{L}	Purinton	49	?	?	84	?	?
15	W	Glop '07	50	?	?	85	?	?
16	W	Glop '07	51	?	?	86	?	?
17	W	Glop '07	52	?	?	87	?	?
18	\mathbf{L}	Glop '07	53	W	Glop '10	88	?	?
19	\mathbf{L}	Glop'07	54	?	?	89	?	?
20	\mathbf{L}	Glop'07	55	?	?	90	?	?
21	W	Glop'07	56	?	?	91	?	?
22	W	Glop '07	57	?	?	92	?	?
23	W	Glop '07	58	?	?	93	?	?
24	L	Glop'07	59	?	?	94	?	?
25	L	Glop '07	60	?	?	95	?	?
26	\mathbf{L}	Glop '07	61	?	?	96	?	?
27	W	Glop'07	62	?	?	97	?	?
28	W	Glop '07	63	?	?	98	?	?
29	W	Glop '07	64	?	?	99	?	?
30	\mathbf{L}	Glop'07	65	?	?	100	?	?
31	L	Glop '07	66	?	?	101	?	?
32	\mathbf{L}	Glop '07	67	?	?	102	?	?
33	W	Glop '10	68	?	?	103	?	?
34	W	Glop '07	69	?	?	104	?	?
35	W	Glop '07	70	?	?	105	?	?

Resulting solver

- SPOTS roughly 2800x faster (480 cores) than Glop.
- \rightarrow 1 day of SPOTS \approx 8 years of Glop

• Outcome of 47 *n*-spot positions known until now.

\rightarrow We compute 42 new outcomes!

- The largest proof is 1000x larger than the largest so far (took 24 days to compute ≈ <u>280,000 CPU hours</u>).
- The Sprouts conjecture remains open.

	out.	auth.	n	out.	auth.	n	out.	auth.
1	L	Conway	36	L	Glop '10	71	W	SPOTS
2	\mathbf{L}	Conway	37	L	Glop '10	72	?	?
3	W	Conway	38	L	Glop '10	73	L	SPOTS
4	W	Mollison	39	W	Glop '11	74	L	SPOTS
5	W	Mollison	40	W	Glop '07	75	?	?
6	\mathbf{L}	Mollison	41	W	Glop '07	76	W	SPOTS
7	L	AJS	42	L	Glop '11	77	W	SPOTS
8	\mathbf{L}	AJS	43	\mathbf{L}	Glop '11	78	?	?
9	W	AJS	44	L	Glop '11	79	L	SPOTS
10) W	AJS	45	W	SPOTS	80	L	SPOTS
11	. W	AJS	46	W	Glop '10	81	?	?
12	L	Purinton	47	W	Glop '07	82	W	SPOTS
13	L	Purinton	48	L	SPOTS	83	W	SPOTS
14	ł L	Purinton	49	L	SPOTS	84	?	?
15	W	Glop '07	50	L	SPOTS	85	L	SPOTS
16	6 W	Glop '07	51	W	SPOTS	86	L	SPOTS
17	W	Glop '07	52	W	SPOTS	87	?	?
18	8 L	Glop '07	53	W	Glop '10	88	W	SPOTS
19	L	Glop '07	54	L	SPOTS	89	W	P-SPOTS
20	L	Glop '07	55	L	SPOTS	90	?	?
21	. W	Glop '07	56	L	SPOTS	91	L	SPOTS
22	W	Glop '07	57	W	P-SPOTS	92	L	SPOTS
23	W	Glop '07	58	W	SPOTS	93	?	?
24	L L	Glop'07	59	W	SPOTS	94	W	P-SPOTS
25	L	Glop '07	60	L	P-SPOTS	95	W	P-SPOTS
26	6 L	Glop '07	61	L	SPOTS	96	?	?
27	W	Glop '07	62	L	SPOTS	97	L	P-SPOTS
28	B W	Glop '07	63	?	?	98	L	P-SPOTS
29) W	Glop '07	64	W	SPOTS	99	?	?
30) L	Glop '07	65	W	SPOTS	100	W	P-SPOTS
31	. L	Glop '07	66	?	?	101	?	?
32	L	Glop '07	67	\mathbf{L}	SPOTS	102	?	?
33	W	Glop '10	68	L	SPOTS	103	L	P-SPOTS
34	W	Glop '07	69	?	?	104	L	P-SPOTS
	XX7	Clop '07	70	W	SPOTS	105	?	?

Conclusion

- Formalized the NAND trees with Grundy numbers.
- We extended df-pn for NAND trees with Grundy numbers.
- New observations about learning heuristics for PNS.
- The new well-scaling parallel variant P²PNS of PNS.
- We almost doubled the verified number of spots for the Sprouts conjecture.

Conclusion

- Formalized the NAND trees with Grundy numbers.
- We extended df-pn for NAND trees with Grundy numbers.
- New observations about learning heuristics for PNS.
- The new well-scaling parallel variant P²PNS of PNS.
- We almost doubled the verified number of spots for the Sprouts conjecture.

Thank you for your attention.

References

- [1] D. Applegate, G. Jacobson, and D. Sleator. Computer Analysis of Sprouts. Carnegie Mellon University Computer Science technical report CMU-CS-91-144. 1991.
- [2] J. Lemoine and S. Viennot. "Computer Analysis of Sprouts with Nimbers". In: Games of no chance 4. Vol. 63. Math. Sci. Res. Inst. Publ. Cambridge Univ. Press, New York, 2015, pp. 161–181.
- [3] J. Lemoine. "Méthodes Algorithmiques pour la Résolution des Jeux Combinatoires". In French. Ph.D. thesis. Université des Sciences et Technologie de Lille Lille I, 2011.
- [4] L. V. Allis. "Searching for Solutions in Games and Artificial Intelligence". Ph.D. thesis. Rijksuniversiteit Limburg, 1994.
- [5] A. Nagai. "A New Depth-First-Search Algorithm for AND/OR trees and its Applications". M.Sc. thesis. The University of Tokyo, 1999.
- [6] A. Saffidine, N. Jouandeau, and T. Cazenave. "Solving Breakthrough with Race Patterns and Job-Level Proof Number Search". In: Advances in Computer Games. Ed. by H. J. van den Herik and A. Plaat. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 196–207.
- [7] A. Kishimoto, M. H. M. Winands, M. Müller, and J. T. Saito. "Game-Tree Search Using Proof Numbers: The First Twenty Years". In: ICGA Journal 35.3 (2012), pp. 131–156.

Learning initialization rules

Heuristics	12	13	14	15	16	17	18	19	20	Avg.
LR 0*6	0.68	0.82	0.93	0.84	0.47	0.70	0.76	0.58	0.54	0.69
LR 0*7	0.43	0.84	0.50	0.75	0.52	0.67	0.85	0.38	0.71	0.60
\mathbf{LR} 0*8	0.64	0.56	0.54	0.70	0.50	0.65	0.70	0.56	0.65	0.61
\mathbf{LR} 0*12	1.01	0.59	0.52	0.94	0.65	1.04	0.53	0.41	0.81	0.69
\mathbf{LR} 0*18	0.76	0.81	0.37	1.13	0.50	1.04	0.64	0.43	0.71	0.67
Lives	0.97	0.72	0.41	0.89	0.51	0.75	0.73	0.50	1.03	0.69
\mathbf{Exp} 0*6	2.48	24.0	<u> </u>							
Exp Lives	1.31	3.34	6.38	12.4	37.9					

The resulting solver performance

Solver	0*27	0*33	0*39	0*45	$0{*}51$	Speedup
Glop [31, 32]	$\approx 3.7 \text{ d}$	$\approx 21 \text{ d}$	$\approx 153 \text{ d}$	$\approx 180 \text{ d}$	$\approx 2.4 \text{ y}$	
Seq-SPOTS Par-SPOTS	4.9 h 2.8 min	28 h 13 min	8.5 d 35 min	10 d 2.5 h	$\approx 7 \text{ w}$ 12 h	$18 \mathrm{x}$ 2,800 x

Solutions complexities

n	auth.	size	n	auth.	size	n	auth.	size
1	Conway	2e0	36	Glop '10	1e6	71	SPOTS	1e7
2	Conway	4e0	37	Glop '10	1e5	$\overline{72}$?	?
3	Conway	7e0	38	Glop'10	1e5	73	SPOTS	1e7
4	Mollison	2e1	39	Glop '11	1e6	74	SPOTS	$1\mathrm{e}7$
5	Mollison	3e1	40	Glop'07	1e5	75	?	?
6	Mollison	9e1	41	Glop'07	2e5	76	SPOTS	$1\mathrm{e}7$
7	AJS	2e2	42	Glop '11	1e6	77	SPOTS	$1\mathrm{e}7$
8	AJS	3e2	43	Glop'11	1e6	78	?	?
9	AJS	1e1	44	Glop '11	1e6	79	SPOTS	1e7
10	AJS	3e2	45	SPOTS	3e6	80	SPOTS	1e7
11	AJS	2e2	46	Glop'10	2e5	81	?	?
12	Purinton	$1\mathrm{e}3$	47	Glop'07	2e5	82	SPOTS	1e7
13	Purinton	$1\mathrm{e}3$	48	SPOTS	3e6	83	SPOTS	1e7
14	Purinton	1e4	49	SPOTS	3e6	84	?	?
15	Glop'07	9e4	50	SPOTS	3e6	85	SPOTS	2e7
16	Glop'07	$1\mathrm{e}3$	51	SPOTS	$1\mathrm{e}7$	86	SPOTS	2e7
17	Glop'07	6e2	52	SPOTS	3e6	87	?	?
18	Glop'07	$7\mathrm{e}3$	53	Glop'10	8e5	88	SPOTS	2e7
19	Glop'07	9e3	54	SPOTS	$1\mathrm{e}7$	89	P-SPOTS	1e9
20	Glop'07	1e4	55	SPOTS	3e6	90	?	?
21	Glop'07	8e4	56	SPOTS	3e6	91	SPOTS	2e7
22	Glop'07	6e3	57	P-SPOTS	$1\mathrm{e}9$	92	SPOTS	2e7
23	Glop'07	4e3	58	SPOTS	3e6	93	?	?
24	Glop'07	5e4	59	SPOTS	7e5	94	P-SPOTS	1e9
25	Glop'07	2e4	60	P-SPOTS	1 e 9	95	P-SPOTS	1e9
26	Glop'07	4e4	61	SPOTS	3e6	96	?	?
$\overline{27}$	Glop '07	3e5	62	SPOTS	3e6	97	P-SPOTS	1e9
28	Glop '07	1e4	63	?	?	98	P-SPOTS	1e9
29	Glop '07	1e4	64	SPOTS	3e6	99	?	?
30	Glop '07	2e5	65	SPOTS	1e7	1e9	P-SPOTS	1e9
31	Glop '07	5e4	66	?	?	101	?	?
32	Glop '07	7e4	67	SPOTS	1e7	102	?	?
33	Glop '10	1e6	68	SPOTS	$1\mathrm{e}7$	103	P-SPOTS	1e9
34	Glop '07	3e4	69	?	?	104	P-SPOTS	1e9
35	Glop '07	3e4	70	SPOTS	3e6	105	?	?