
Proof-number search based
solver for the Sprouts game

Bc. Tomáš Čížek
Supervisor: Mgr. Martin Schmid, Ph.D.

Advisor: doc. RNDr. Martin Balko, Ph.D.

Sprouts rules

A two-player game with simple rules:

• Starts with n initial spots.

• Players alternate in connecting spots by curves (cycles are allowed).

• Curves cannot cross.

• A new spot is added along a newly drawn curve.

• Each spot can be incident to at most three curves.

• The first player with no move loses.

Sprouts rules

A two-player game with simple rules:

• Starts with n initial spots.

• Players alternate in connecting spots by curves (cycles are allowed).

• Curves cannot cross.

• A new spot is added along a newly drawn curve.

• Each spot can be incident to at most three curves.

• The first player with no move loses.

Sprouts rules

A two-player game with simple rules:

• Starts with n initial spots.

• Players alternate in connecting spots by curves (cycles are allowed).

• Curves cannot cross.

• A new spot is added along a newly drawn curve.

• Each spot can be incident to at most three curves.

• The first player with no move loses.

Sprouts rules

A two-player game with simple rules:

• Starts with n initial spots.

• Players alternate in connecting spots by curves (cycles are allowed).

• Curves cannot cross.

• A new spot is added along a newly drawn curve.

• Each spot can be incident to at most three curves.

• The first player with no move loses.

Sprouts rules

A two-player game with simple rules:

• Starts with n initial spots.

• Players alternate in connecting spots by curves (cycles are allowed).

• Curves cannot cross.

• A new spot is added along a newly drawn curve.

• Each spot can be incident to at most three curves.

• The first player with no move loses.

Sprouts rules

A two-player game with simple rules:

• Starts with n initial spots.

• Players alternate in connecting spots by curves (cycles are allowed).

• Curves cannot cross.

• A new spot is added along a newly drawn curve.

• Each spot can be incident to at most three curves.

• The first player with no move loses.

The early beginnings

www.princeton.edu www.alchetron.com/Mike-Paterson

• Designed by British mathematicians
J. Conway and M. Paterson in 1967.

• Easy to play, difficult to analyze.

• Many attempts to determine
outcomes of Sprouts positions with
n initial spots under the perfect
play (weak solutions).

The early beginnings

• Designed by British mathematicians
J. Conway and M. Paterson in 1967.

• Easy to play, difficult to analyze.

• Many attempts to determine
outcomes of Sprouts positions with
n initial spots under the perfect
play (weak solutions).

Searching trees computationally

0.2AB|1a2a.1aABa+12.AB|AB

• Applegate, Jacobson, and Sleator (1991) [1]
created the first computer solver for Sprouts.

• A necessity of a state representation (planar
embeddings).

• Using a simple Alpha-Beta pruning for search.

Searching trees computationally

• Applegate, Jacobson, and Sleator (1991) [1]
created the first computer solver for Sprouts.

• A necessity of a state representation (planar
embeddings).

• Using a simple Alpha-Beta pruning for search.

• The famous Sprouts conjecture was formed.
• n-spot position is winning n ≡ 3, 4, 5 (mod 6).

Game trees grow extremely fast

Grundy numbers

• Lemoine and Viennot (2007) [2]
introduced a solver Glop utilizing
the Sprague–Grundy theorem.

• Analyze independent parts (lands)
separately:
• Compute Grundy number (nimber)

gn(L) for each land L.

• gn(L1 + L2) = gn(L1)⊕ gn(L2).

• L1 + L2 is loss gn(L) = 0.

→ More complicated NAND trees
with Grundy numbers.

Grundy numbers

• Lemoine and Viennot (2007) [2]
introduced a solver Glop utilizing
the Sprague–Grundy theorem.

• Analyze independent parts (lands)
separately:
• Compute Grundy number (nimber)

gn(L) for each land L.

• gn(L1 + L2) = gn(L1)⊕ gn(L2).

• L1 + L2 is loss gn(L) = 0.

→ More complicated NAND trees
with Grundy numbers.

Largely imbalanced game trees

Proof-number search

• Alpha-beta pruning can get stuck in difficult
subtrees if the heuristic was wrong.

• Explore subtrees with potentially shortest
proof → Proof-number search (PNS) [4]:
• Each node N is associated with a proof number

pn(N) and a disproof number dn(N).

• Initialized heuristically in leaves.

• Aggregated from children in expanded nodes.

• Expand the most-proving node (MPN) and update.

• Must be adapted for NAND trees with Grundy
numbers!
• A basic variant by Lemoine (and Viennot) in Glop [3].

Proof-number search

• Alpha-beta pruning can get stuck in difficult
subtrees if the heuristic was wrong.

• Explore subtrees with potentially shortest
proof → Proof-number search (PNS) [4]:
• Each node N is associated with a proof number

pn(N) and a disproof number dn(N).

• Initialized heuristically in leaves.

• Aggregated from children in expanded nodes.

• Expand the most-proving node (MPN) and update.

• Must be adapted for NAND trees with Grundy
numbers!
• A basic variant by Lemoine (and Viennot) in Glop [3].

Depth-first Proof-number search

• The space complexity of PNS is too large (the whole tree is stored in memory).

• Depth-first Proof-number search (df-pn) [5]:
• A recursive and memory-efficient variant of PNS (logarithmic space complexity).

• Two thresholds pt(Ncurr) and dt(Ncurr) to guarantee MPN in the subtree of Ncurr.

• Combined with a transposition table (replacing policy) and a nimber database.

Depth-first Proof-number search

• The space complexity of PNS is too large (the whole tree is stored in memory).

• Depth-first Proof-number search (df-pn) [5]:
• A recursive and memory-efficient variant of PNS (logarithmic space complexity).

• Two thresholds pt(Ncurr) and dt(Ncurr) to guarantee MPN in the subtree of Ncurr.

• Combined with a transposition table (replacing policy) and a nimber database.

• The update rules for Nnext:

Depth-first Proof-number search

• The space complexity of PNS is too large (the whole tree is stored in memory).

• Depth-first Proof-number search (df-pn) [5]:
• A recursive and memory-efficient variant of PNS (logarithmic space complexity).

• Two thresholds pt(Ncurr) and dt(Ncurr) to guarantee MPN in the subtree of Ncurr.

• Combined with a transposition table (replacing policy) and a nimber database.

• Extended update rules for Nnext with Grundy numbers:

Our sequential solver SPOTS

• Approximately 18 times faster than Glop + memory advantageous df-pn.

Parallel Proof-number search

• Adapting PNS for large computational cluster with distributed memory.

• Master-workers scheme:

1st improvement — share results

• Share Grundy numbers with other workers to prevent search overhead:

• Small number – no additional communication overhead.

• Highly reusable – a land may occur in many positions.

2nd improvement — P2PNS

• Parallelize the workers themselves rather than adding more of them:

• Reduced communication overhead, more relevant work, local memory utilization.

Scaling efficiency of P2PNS

• Reaching roughly 100x speedup (480 cores) compared to the sequential df-pn.

• Much better scaling efficiency than other parallel PNS:

Current PPN2 search [6]
35% on 32 CPU cores

Our P2PNS
34% on 480 CPU cores

→ Addresses the scaling problem of PNS posed by Kishimoto et al. [7].

Resulting solver

• SPOTS roughly 2800x faster (480 cores) than Glop.

→ 1 day of SPOTS ≈ 8 years of Glop

Resulting solver

• SPOTS roughly 2800x faster (480 cores) than Glop.

→ 1 day of SPOTS ≈ 8 years of Glop

• Outcome of 47 n-spot positions known until now.

Resulting solver

• SPOTS roughly 2800x faster (480 cores) than Glop.

→ 1 day of SPOTS ≈ 8 years of Glop

• Outcome of 47 n-spot positions known until now.

→ We compute 42 new outcomes!
• The largest proof is 1000x larger than the largest so far

(took 24 days to compute ≈ 280,000 CPU hours).

• The Sprouts conjecture remains open.

Conclusion

• Formalized the NAND trees with Grundy numbers.

• We extended df-pn for NAND trees with Grundy numbers.

• New observations about learning heuristics for PNS.

• The new well-scaling parallel variant P2PNS of PNS.

• We almost doubled the verified number of spots for the Sprouts conjecture.

Conclusion

• Formalized the NAND trees with Grundy numbers.

• We extended df-pn for NAND trees with Grundy numbers.

• New observations about learning heuristics for PNS.

• The new well-scaling parallel variant P2PNS of PNS.

• We almost doubled the verified number of spots for the Sprouts conjecture.

Thank you for your attention.

References
• [1] D. Applegate, G. Jacobson, and D. Sleator. Computer Analysis of Sprouts. Carnegie Mellon

University Computer Science technical report CMU-CS-91-144. 1991.

• [2] J. Lemoine and S. Viennot. “Computer Analysis of Sprouts with Nimbers”. In: Games of no
chance 4. Vol. 63. Math. Sci. Res. Inst. Publ. Cambridge Univ. Press, New York, 2015, pp. 161–181.

• [3] J. Lemoine. “Méthodes Algorithmiques pour la Résolution des Jeux Combinatoires”. In French.
Ph.D. thesis. Université des Sciences et Technologie de Lille - Lille I, 2011.

• [4] L. V. Allis. “Searching for Solutions in Games and Artificial Intelligence”. Ph.D. thesis.
Rijksuniversiteit Limburg, 1994.

• [5] A. Nagai. “A New Depth-First-Search Algorithm for AND/OR trees and its Applications”. M.Sc.
thesis. The University of Tokyo, 1999.

• [6] A. Saffidine, N. Jouandeau, and T. Cazenave. “Solving Breakthrough with Race Patterns and
Job-Level Proof Number Search”. In: Advances in Computer Games. Ed. by H. J. van den Herik and
A. Plaat. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 196–207.

• [7] A. Kishimoto, M. H. M. Winands, M. Müller, and J. T. Saito. “Game-Tree Search Using Proof
Numbers: The First Twenty Years”. In: ICGA Journal 35.3 (2012), pp. 131–156.

Learning initialization rules

The resulting solver performance

Solutions complexities

	Výchozí oddíl
	Snímek 1: Proof-number search based solver for the Sprouts game
	Snímek 2: Sprouts rules
	Snímek 3: Sprouts rules
	Snímek 4: Sprouts rules
	Snímek 5: Sprouts rules
	Snímek 6: Sprouts rules
	Snímek 7: Sprouts rules
	Snímek 8: The early beginnings
	Snímek 9: The early beginnings
	Snímek 10: Searching trees computationally
	Snímek 11: Searching trees computationally
	Snímek 12: Game trees grow extremely fast
	Snímek 13: Grundy numbers
	Snímek 14: Grundy numbers
	Snímek 15: Largely imbalanced game trees
	Snímek 16: Proof-number search
	Snímek 17: Proof-number search
	Snímek 18: Depth-first Proof-number search
	Snímek 19: Depth-first Proof-number search
	Snímek 20: Depth-first Proof-number search
	Snímek 21: Our sequential solver SPOTS
	Snímek 22: Parallel Proof-number search
	Snímek 23: 1st improvement — share results
	Snímek 24: 2nd improvement — P2PNS
	Snímek 25: Scaling efficiency of P2PNS
	Snímek 26: Resulting solver
	Snímek 27: Resulting solver
	Snímek 28: Resulting solver
	Snímek 29: Conclusion
	Snímek 30: Conclusion
	Snímek 31: References
	Snímek 33: Learning initialization rules
	Snímek 34: The resulting solver performance
	Snímek 35: Solutions complexities

