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Sprouts rules

A two-player game with simple rules:

Starts with n initial spots.

Players alternate in connecting spots by curves (cycles are allowed).
Curves cannot cross.

A new spot is added along a newly drawn curve.

Each spot can be incident to at most three curves,

The first player with no move loses.
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The early beginnings

* Designed by British mathematicians
J. Conway and M. Paterson in 1967.

e Easy to play, difficult to analyze.

* Many attempts to determine
outcomes of Sprouts positions with
n initial spots under the perfect
play (weak solutions).
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* Designed by British mathematicians
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Searching trees computationally

 Applegate, Jacobson, and Sleator (1991) [1]
created the first computer solver for Sprouts.

* A necessity of a state representation (planar
embeddings). 0.2AB|la2a.lalhBa+12.AB|AB

e Using a simple Alpha-Beta pruning for search. |
1AB|AB

1 12 2AB|AB

22 AB|AB




Searching trees computationally

Applegate, Jacobson, and Sleator (1991) [1]
created the first computer solver for Sprouts.

outcome author

L Conway
Conway
Conway
Mollison
Mollison
Mollison

AJS
AJS
AJS
AJS
AJS
Purinton
Purinton

Purinton
?

A necessity of a state representation (planar
embeddings).

Using a simple Alpha-Beta pruning for search.
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The famous Sprouts conjecture was formed.
* n-spot position is winning €>n=3,4,5 (mod 6).




Game trees grow extremely fast
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Grundy numbers

 Lemoine and Viennot (2007) [?]
introduced a solver Glop utilizing
the Sprague—Grundy theorem.

* Analyze independent parts (lands)
separately:

e Compute Grundy number (nimber)
gn(L) for each land L.

* gn(L;+L,)=gn(L;) D gn(L,).
e L,+L,isloss <> gn(L)=0.

— More complicated NAND ftrees
with Grundy numbers.

Ly+-- -+ Li+xn

L2 + %0 L2 + *gn(Lg)

Cl—l—n’ Cm+n’ Li+0 L1+*(n’—1)



Grundy numbers

 Lemoine and Viennot (2007) [?] n out. auth. | n out. auth. | n out. auth.
. cpe i L Conway |19 L  Glop 07 | 37 g ?
introduced a solver Glop utilizing 5 L Conway |20 L Clop'07 |38 7 )
o 3 W Conway |21 W Glop 07 | 39 ? ?
the Sprague—Grundy theorem. 4 W Mollison [22 W Glop07 |40 W  Glop 07
. 5 W Mollison [23 W Glop 07 [41 W  Glop 07
* Analyze independent parts (lands) 6 L Mollison |24 L Glop'07 |42 7 ?
7 1L AJS |25 L Glop07 |43 7 ?
separately: 8 L AJS |26 L Glopo7 |44 ? 7
. 9 W AJS |27 W Glop07 |45 ?
e Compute Grundy number (nimber) 0w Am EEEAEEEEE 4
gn(L) for each land L. 1 W AJS 29 W Glop 07 |47 W  Glop 07
12 L  Purinton |30 L  Glop 07 | 48 ? 7
 gn(L,+L,)=gn(L,;) &b gn(L,). 13 L Purinton [31 L Glop 07 |49 7 ?
. 14 L  Purinton |32 L  Glop '07 | 50 g s
* L;+L,isloss > gn(L)=0. 15 W Glop'07 |33 2 % 51 7 2
. 16 W Glop'07 |34 W Glop 07 |52 7 ?
- More complicated NAND trees 17 W Glop07 |35 W Glop07 |53 * 7
18 L Glop07 |36 7 ? 54 7 ?

with Grundy numbers.



Largely imbalanced game trees
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Proof-number search

e Alpha-beta pruning can get stuck in difficult
subtrees if the heuristic was wrong.

 Explore subtrees with potentially shortest (2,1)

proof = Proof-number search (PNS) [4]: 2(ABIA;3
0,00

e Each node N is associated with a proof number
pn(N)and a disproof number dn(/N).

* |Initialized heuristically in leaves.
 Aggregated from children in expanded nodes.

| 22 ! 22 AB|AB
e Expand the most-proving node (MPN) and update. (00, 0) (1,1) (00,0) (1,1) (1,1)
 NMust be adapted for NAND trees with Grundy
numbers!

e A basic variant by Lemoine (and Viennot) in Glop [3].



Proof-number search

* Alpha-beta pruning can get stuck in difficult

subtrees if the heuristic was wrong. s ol el | n_odh_aufil | n_oth_edis
1 L Conway |19 L Glop 07 |37 L  Glop 10
. . 2 L Conway |20 L Glop’07 {38 L  Glop 10
* Explore subtrees with potentially shortest | 3 w coway |21 W clpor 39 W clpnn
4 W DMollison [22 W Glop 07 {40 W Glop 07
proof - Proof-number search (PNS) [4]: 5 W Molison |23 W Glop07 |41 W Glop 07
6 L  Mollison [24 L Glop’07 |42 L  Glop 1l
e Each node N is associated with a proof number | 7 L AlS 125 L Glop07 |43 L Glop il
. 8 L AJS 26 L Glop’07 |44 L Glop’ll
pn(N)and a disproof number dn(N). 9 W AJS |27 W Glp07 |45 ¢ ?
o o ) 10 W AJS 28 W Glop'07 |46 W  Glop '10
* Initialized heuristically in leaves. 11 W AJS |29 W Glop'07 |47 W  Glop 07
12 L  Purinton |30 L  Glop 07 | 48 i 7
 Aggregated from children in expanded nodes. 13 L Purinton |31 L  Glop 07 |49 7 /
14 L  Purinton |32 L Glop 07 | 50 7 ?
* Expand the most-proving node (MPN) and update. 15 W Glop 07 || DERLN 51 ¢ ¥
16 W Glop’'07 |34 W Glop 07 | 52 ? ?
. 17 W  Glop’'07 |35 W Glop 07 |33 W  Glop 10
* Must be adapted for NAND trees with Grundy | 18 © cipor |36 L Gop'o |54 72 7

numbers!
e A basic variant by Lemoine (and Viennot) in Glop [3].



Depth-first Proof-number search

 The space complexity of PNS is too large (the whole tree is stored in memory).

e Depth-first Proof-number search (df-pn) [5]:
 Arecursive and memory-efficient variant of PNS (logarithmic space complexity).

e Two thresholds pt(N_,,) and dt(N_,,) to guarantee MPN in the subtree of N_,,.
 Combined with a transposition table (replacing policy) and a nimber database.

el N X-ReRehoke
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e Two thresholds pt(N_,,) and dt(N_,,) to guarantee MPN in the subtree of N_,,.
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* The update rules for N,

pt(Nne:Et) — dt(Ncw"r) - an(NC’LLTT') + pnO(Nnewt)a
dt(Nnea:t) — min{pt(Ncurr)a dn(Nnemtg) ‘l' 1}



Depth-first Proof-number search

 The space complexity of PNS is too large (the whole tree is stored in memory).

e Depth-first Proof-number search (df-pn) [5]:
 Arecursive and memory-efficient variant of PNS (logarithmic space complexity).

e Two thresholds pt(N_,,) and dt(N_,,) to guarantee MPN in the subtree of N_,,.
 Combined with a transposition table (replacing policy) and a nimber database.

* Extended update rules for N, ,, with Grundy numbers:

pt(Nnea:t) - dt(Nnemt) = 00,
mint(Npeqgr) = thMinsg,,, — otherMins .y, neat,

pS(Nnea:t) — dS(Nne:rt) - 07

(Nneat)

(Nnea:t) - min{pt(Ncurr); dn(Nne:ctg) + 1}:
mint(Npezt) = mint(Neyer ),

(Nneat)

(Nneat)

pS Nnemt - dS(Ncur'r) + an(Ncurr) - pnO(Nnemt);




Our sequential solver SPOTS

* Approximately 18 times faster than Glop + memory advantageous df-pn.
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Parallel Proof-number search

* Adapting PNS for large computational cluster with distributed memory.

* Master-workers scheme:

(Expansion) (Update) (Selection) (Pre-Update)
& (& Pseudo-MPN
|
] Job Submission Job Assignment
< Workers J. <

oo o

Completed Job

Assigned Job




1stimprovement — share results

e Share Grundy numbers with other workers to prevent search overhead:

*  Small number — no additional communication overhead.

e Highly reusable —a land may occur in many positions.

Sharing 1 2 4 8 EAff.
Iterations X 393k 843k 1,470k 2,180k 36%
Time 374s 371s 281s 190 s 0
Iterations 398k 572k 818k 847k
Time v 374s 259s 174 s 81 s 61%




2" improvement — P2PNS

e Parallelize the workers themselves rather than adding more of them:

* Reduced communication overhead, more relevant work, local memory utilization.
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Scaling efficiency of P?PNS

e Reaching roughly 100x speedup (480 cores) compared to the sequential df-pn.
* Much better scaling efficiency than other parallel PNS:

Current PPN? search [6] o Our P?PNS
35% on 32 CPU cores 34% on 450 CPU cores

—> Addresses the scaling problem of PNS posed by Kishimoto et al. [7].

P?PNS Iterations Time Scaling Efficiency Speedup
df-pn 3,150k 47.5 min — — 1.00x
1 core 3,650k 78.0 min  1.00x 100% 0.61x
2 cores 3,680k 39.3 min 1.98x 99% 1.21x
4 cores 3,260k 18.8 min  4.14x 104% 2.53x
8 cores 4,190k 11.6 min ~ 6.72x 84% 4.09x
16 cores 3,760k 294 s 15.9x 99% 9.70x
32 cores 4,492k 178 s 26.3x 81% 16.0x
64 cores 4,120k 88.4 5 52.9x 83% 32.2x
128 cores 5,710k 54.1s 86.5x 68% 52.7x
256 cores 7,290k 36.6 s 128x 50% 78.3x
480 cores 8,710k 28.1s 167x 34% 101x
960 cores 13,500k 214 s 219x 23% 133x




Resulting solver

e SPOTS roughly 2800x faster (480 cores) than Glop.
— 1 day of SPOTS = 8 years of Glop




[ ]
Re S u | t I n S O | Ve r n out. auth. | n out. auth. ‘ n out. auth.
1 L Conway |36 L  Glop 10 | 71 ? ?
2 L Conway |37 L  Glop 10 | 72 ? ?
3 W Conway |38 L Glop'10 | 73 ? ?
4 W  Mollison |39 W Glop 11 | 74 ? ?
5 W  Mollison 140 W  Glop 07 | 75 ? ?
e SPOTS roughly 2800x faster (480 cores) than Glop. 6 L Ooln |4 W Glpor |76 ¢
7 L AJS 42 L Glop'11 | 77 ? ?
8 L AJS 43 L Glop 11 | 78 ? ?
; 2
— 1 day of SPOTS = 8 years of Glop o w axn CNEINIE T
11 W AJS 46 W  Glop '10 | 81 ? ?
12 L  Puwrinton |47 w  Glop 07 | 82 7 7
13 L  Purinton | 48 ? ? 83 ? ?
14 L Purinton |49 7 ? 84 ? ?
15 W Glop 07 | 50 ? ? 85 ? ?
16 W  Glop 07 | 51 ? ? 86 ? ?
.. . 17 W Glop'07 |52 ? ? 87 77
* Qutcome of 47 n-spot positions known until now. 18 L Glop'07 53 W Glplo | 8 7
19 L Glop 07 | 54 ? ? 89 ? ?
20 L Glop '07 | 55 ? 7 90 ? ?
21 W Glop 07 | 56 ? ? 91 ? ?
22 W Glop 07 | 57 ? ? 92 ? ?
23 W Glop 07 | 58 ? ? 93 ? ?
24 L Glop 07 | 59 ? ? 94 ? ?
25 L Glop 07 | 60 ? ? 95 ? ?
26 L Glop 07 | 61 ? ? 96 ? ?
27 W  Glop'07 |62 7 ? 97 ? ?
28 W  Glop 07 | 63 ? ? 98 ? ?
29 W Glop 07 | 64 ? ? 99 ? ?
30 L Glop 07 | 65 ? ? 100 ? ?
31 L Glop '07 | 66 ? 7 101 ? ?
32 L Glop '07 | 67 ? ? 102 ? ?
33 W Glop '10 | 68 ? ? 103 ? ?
34 W Glop 07 | 69 ? ? 104 ? ?
35 W Glop 07 | 70 ? ? 105 ? ?




. n out. auth. | n out. auth. | n out. auth.
eSuitin g SO|ver B T e e e —"
2 L Conway |37 L Glop 10 72 ? s
3 W Conway |38 L Glop '10 73 L SPOTS
4 W Mollison |39 W Glop 11 74 I SPOTS
5 W  Mollison |40 W  Glop 07 75 ? ?
* SPOTS roughly 2800x faster (480 cores) than Glop. | ¢ & o 41 W clopor 76w spors
7 5 AJS 42 L Glop 11 AT W SPOTS
8 1L AlJS 43 IL, Glop 11 78 Va ?
-~ 9 W AlJS 44 IL, Glop '11 79 1L, SPOTS
— 1 day of SPOTS = 8 years of Glop B w  an e
11 W AJS 46 W Glop 10 81 s P
12 L  Purinton |47 W  Glop 07 82 W SPOTS
13 T Purinton | 48 1k SPOTS 83 W SPOTS
14 iE Purinton | 49 i SPOTS 84 ? ?
15 W  Glop 07 | 50 I SROTS 85 i SPOTS
16 W Glop 07 |51 W SPOTS 86 I SPOTS
. . . 17 W Glop 07 |52 W SPOTS 87 ? ?
* Qutcome of 47 n-spot positions known until now. 18 L Glp07 |53 W Glp’lo 88 W SPOTS
19 Il Glop 07 | 54 L SPOTS 89 W  P-SPOTS
20 5 Glop 07 | 55 L SEROMS 90 3 4
21 W Glop 07 |56 I SPOTS 91 1L, SPOTS
9 We com pUte 42 new OUtcomES! 22 W Glop’07 |57 W P-SPOTS 92 1 SPOTS
23 W Glop 07 | 58 W SPOTS 93 ? ?
° i 24 L Glp'07 |59 W SPOTS 94 W P-SPOTS
The largest proof is 1000x larger than the largest so far Mol s
~ 26 ii7 Glop 07 | 61 I SE @IS 96 ? ?
(took 24 days to compute = 280,000 CPU hours). 2w oo T
. . 28 W Glop'07 |63 7 ? 98 L P-SPOTS
* The Sprouts conjecture remains open. 20 W Glop'07 [64 W SPOTS 99 7 ?
30 I Glop 07 | 65 W SPOTS 100 W P-SPOTS
31 L Glop 07 |66 7 ? 101 7 ?
32 5 Glop 07 | 67 5 SPOTS 102 ? ?
33 W Glop 10 | 68 I SPOTS 103 1L, P-SPOTS
34 W Glop 07 | 69 ? ? 104 L P-SPOTS
35 W Glop 07 |70 W SROHS 105 ? ?




Conclusion

* Formalized the NAND trees with Grundy numbers.
* We extended df-pn for NAND trees with Grundy numbers.
 New observations about learning heuristics for PNS.

* The new well-scaling parallel variant P?’PNS of PNS.

e We almost doubled the verified number of spots for the Sprouts conjecture.




Conclusion

* Formalized the NAND trees with Grundy numbers.

* We extended df-pn for NAND trees with Grundy numbers.
 New observations about learning heuristics for PNS.

* The new well-scaling parallel variant P?’PNS of PNS.

e We almost doubled the verified number of spots for the Sprouts conjecture.

Thank you for your attention.
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Learning initialization rules

Heuristics 12 13 14 15 16 17 18 19 20 Avg.

LR 0%6 0.68 0.82 093 0.84 047 0.70 0.76 0.58 0.54 0.69
LR 0x7 0.43 0.84 0.50 0.75 0.52 0.67 085 0.38 0.71 0.60
LR 0%8 0.64 0.56 0.54 0.70 0.50 0.65 0.70 0.56 0.65 0.61
LR 0%12 1.01 0.59 0.52 094 065 1.04 0.53 041 0.81 0.69
LR 0*18 0.76 0.81 037 1.13 0.50 1.04 0.64 0.43 0.71 0.67
Lives 0.97 0.72 041 0.89 0.51 0.75 0.73 0.50 1.03 0.69
Exp 0%6 248 240 — — = = = = @@ — —

Exp Lives 131 334 638 124 379 — — — — —




The resulting solver performance

Solver 0*x27 0x33 0x39 0*45 0x51 Speedup
Glop [31,32] =37d ~21d ~153d ~180d =~24y —

Seq-SPOTS 4.9 h 28 h 8.0 d 10 d ~ 7w 18x
Par-SPOTS 28 min 13 min 35 min 2.0 h 12 h 2,800x




Solutions complexities

n auth. size | n auth. size | n auth. size
1 Conway 2¢c0
2 Conway  4e0
3 Conway TeO
4 Mollison 2el
5 DMollison 3el
6  Mollison 9el
7 AJS 22
8 AJS 3e2
9 AJS lel
10 AJS 3e2
11 AJS 22
12 Purinton 1e3
Purinton  1e3

Glop 07
Glop 07

1e3
6c2
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