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Sprouts rules

A two-player game with simple rules:

• Starts with n initial spots.

• Players alternate in connecting spots by curves (cycles are allowed).

• Curves cannot cross.

• A new spot is added along a newly drawn curve.

• Each spot can be incident to at most three curves.

• The first player with no move loses.
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The early beginnings
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• Designed by British mathematicians
J. Conway and M. Paterson in 1967.

• Easy to play, difficult to analyze.

• Many attempts to determine
outcomes of Sprouts positions with
n initial spots under the perfect
play (weak solutions).
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Searching trees computationally
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• Applegate, Jacobson, and Sleator (1991) [1]
created the first computer solver for Sprouts.

• A necessity of a state representation (planar
embeddings).

• Using a simple Alpha-Beta pruning for search.



Searching trees computationally

• Applegate, Jacobson, and Sleator (1991) [1]
created the first computer solver for Sprouts.

• A necessity of a state representation (planar
embeddings).

• Using a simple Alpha-Beta pruning for search.

• The famous Sprouts conjecture was formed.
• n-spot position is winning n ≡ 3, 4, 5 (mod 6).



Game trees grow extremely fast



Grundy numbers

• Lemoine and Viennot (2007) [2]
introduced a solver Glop utilizing
the Sprague–Grundy theorem.

• Analyze independent parts (lands)
separately:
• Compute Grundy number (nimber)

gn(L) for each land L.

• gn(L1 + L2) = gn(L1)⊕ gn(L2).

• L1 + L2 is loss gn(L) = 0.

→ More complicated NAND trees
with Grundy numbers.
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Largely imbalanced game trees



Proof-number search

• Alpha-beta pruning can get stuck in difficult
subtrees if the heuristic was wrong.

• Explore subtrees with potentially shortest
proof → Proof-number search (PNS) [4]:
• Each node N is associated with a proof number

pn(N) and a disproof number dn(N).

• Initialized heuristically in leaves.

• Aggregated from children in expanded nodes.

• Expand the most-proving node (MPN) and update.

• Must be adapted for NAND trees with Grundy
numbers!
• A basic variant by Lemoine (and Viennot) in Glop [3].
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Depth-first Proof-number search

• The space complexity of PNS is too large (the whole tree is stored in memory).

• Depth-first Proof-number search (df-pn) [5]:
• A recursive and memory-efficient variant of PNS (logarithmic space complexity).

• Two thresholds pt(Ncurr) and dt(Ncurr) to guarantee MPN in the subtree of Ncurr.

• Combined with a transposition table (replacing policy) and a nimber database.
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Depth-first Proof-number search

• The space complexity of PNS is too large (the whole tree is stored in memory).

• Depth-first Proof-number search (df-pn) [5]:
• A recursive and memory-efficient variant of PNS (logarithmic space complexity).

• Two thresholds pt(Ncurr) and dt(Ncurr) to guarantee MPN in the subtree of Ncurr.

• Combined with a transposition table (replacing policy) and a nimber database.

• Extended update rules for Nnext with Grundy numbers:



Our sequential solver SPOTS

• Approximately 18 times faster than Glop + memory advantageous df-pn.



Parallel Proof-number search

• Adapting PNS for large computational cluster with distributed memory.

• Master-workers scheme:



1st improvement — share results

• Share Grundy numbers with other workers to prevent search overhead:

• Small number – no additional communication overhead.

• Highly reusable – a land may occur in many positions.



2nd improvement — P2PNS 

• Parallelize the workers themselves rather than adding more of them:

• Reduced communication overhead, more relevant work, local memory utilization.



Scaling efficiency of P2PNS

• Reaching roughly 100x speedup (480 cores) compared to the sequential df-pn.

• Much better scaling efficiency than other parallel PNS:

Current PPN2 search [6]
35% on 32 CPU cores

Our P2PNS
34% on 480 CPU cores

→ Addresses the scaling problem of PNS posed by Kishimoto et al. [7].
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→ 1 day of SPOTS ≈ 8 years of Glop
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Resulting solver

• SPOTS roughly 2800x faster (480 cores) than Glop.

→ 1 day of SPOTS ≈ 8 years of Glop

• Outcome of 47 n-spot positions known until now.

→ We compute 42 new outcomes!
• The largest proof is 1000x larger than the largest so far

(took 24 days to compute ≈ 280,000 CPU hours).

• The Sprouts conjecture remains open.



Conclusion

• Formalized the NAND trees with Grundy numbers.

• We extended df-pn for NAND trees with Grundy numbers.

• New observations about learning heuristics for PNS.

• The new well-scaling parallel variant P2PNS of PNS.

• We almost doubled the verified number of spots for the Sprouts conjecture.
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Thank you for your attention.
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Learning initialization rules



The resulting solver performance



Solutions complexities
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