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Abstract. This is the story of a man named Vašek.
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1. Young Genius—Notes by AB

Raised in Plzeň, renowned for its brewery, Vašek (Fig. 1) studied mathematics at
Charles University in Prague under the tutelage of Zdeněk Hedrlín, along with
Pavol Hell, Luděk Kučera and Jarik Nešetřil. There he was trained in the alge-
braic aspects of graph theory, publishing his first paper [13], appropriately on rigid
digraphs (those with only trivial endomorphisms), at the tender age of 19.

In August 1968, Vašek and his then wife Jarmila decided that their future lay
elsewhere but in the clutches of his homeland’s unwelcome guests. After a brief stop
in Vienna and an encounter with a ghost in Hyde Park, Vašek made landfall in
Fredericton, New Brunswick (Fig. 2), where he set his mind to positional games on
hypergraphs and Ramsey-type problems. It was at the pivotal Calgary meeting the
following summer that many of my generation first met one another, and this was
so for Vašek and myself. Vašek was already a seasoned researcher, having written
some half-dozen papers on a variety of topics. The following autumn, he enrolled
as a Ph.D. student with Crispin Nash-Williams. It took him just a year to obtain
his doctorate. He sailed through the notorious comprehensive exams that Crispin
was in the habit of setting, and found time between bouts of research to drink beer
(Fig. 3).

Vašek’s doctoral thesis, on Hypergraphs and Ramseyian Theorems, gave rise to
several publications, notably [15]. Vašek subsequently wrote a series of papers with
Frank Harary where they introduced and studied generalized Ramsey numbers
[38–40].
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Fig. 1. A short introduction

During that year, two mathematicians were to have a significant influence on
the direction of Vašek’s future research. One was Nash-Williams, the other Jack
Edmonds. Nash-Williams gave a graduate course on Hamilton cycles. As a sup-
port for the course, he had prepared a 58-page manual of definitions and notation,
including formal definitions of ordered and unordered pairs, the distinction between
circuits (sequences) and circuitoids (subgraphs), as well as idiosyncratic notation,
the most memorable of which was the “lampshade” of a set. Only the most compli-
cated of Greek letters, ξ , η and ζ , would do for names of vertices. Despite or perhaps
because of this, the course left its mark on all of us. Vašek inherited Nash-Williams’
insistence on precision, but preferred the brisk clear style, expressive language, and

Fig. 2. Fall 1968
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Fig. 3.

crisp notation that exemplify his writings and lectures. In explaining Zykov’s proof
of Turán’s theorem to me many years ago, he referred to a certain stable set as
“fly-shit”—that proof is now engraved in my memory. More recently, sharks and
swimmers were invoked during a talk on instances of the travelling salesman prob-
lem. His pedagogical talents extend to everyday life. Once, having been served a
very tough steak, he carefully shaped it into the form of a shoe sole and left it
lying eloquently on the plate. One of the theorems covered by Nash-Williams was
Pósa’s sufficient condition for hamiltonicity, a weakening of Dirac’s degree condi-
tion. Shortly afterwards, Vašek came up with a best possible result of this type [16].
It was in searching for an algorithmic proof of this theorem a few years later that we
conceived the Hamiltonian closure operation [10]. Vašek wrote several influential
papers on the topic of Hamilton cycles, notably [21], where he introduced the notion
of toughness, a graph being t-tough if no more than k components result from the
deletion of fewer than (k + 1)t vertices. There he proposed the conjecture that every
t-tough graph is Hamiltonian provided that t is large enough. Even though his ini-
tial guess of t > 3/2, and later t = 2, proved to be too optimistic [7], the conjecture
remains very much alive. Vašek reduced his Erdős number to one by coming up with
an elegant sufficient condition for Hamiltonicity in terms of the stability number
and connectivity [37], and this during a car ride with the P.G.O.M. from Pullman to
Spokane, WA (Fig. 4). With characteristic courtesy, Vašek thanks Louise Guy for
her steady driving. At a Summer Research Institute in Quebec City in the summer
of 1971, Vašek constructed infinite families of hypohamiltonian graphs [20], but
also found time to learn French, fall in love with his French teacher, and write a
prize-winning short story, Déjà Vu.

For the record, it should be mentioned here that he had a hand or two in an
NP-completeness result on Hamilton cycles [75], namely that deciding whether a
graph has a Hamiltonian square is NP-complete, published by one P. (for Polly)
Underground (Fig. 5) whose main profession was not mathematics. Polly also makes
an appearance in Vašek’s highly regarded and much used text Linear Programming.
There was also an unpublished note entitled “A sufficient condition for a graph to be
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Fig. 4. With a co-author

almost complete”, which showed that a certain sufficient condition for hamiltonici-
ty, touted by its author at a Florida meeting as superior to existing conditions (such
as Vašek’s degree condition) because high density was not required, was satisfied
only by circuits or extremely dense graphs.

It was Edmonds who introduced Vašek to the world of linear programming.
Vašek quickly realized its potential role in NP-hard problems such as the Hamil-
tonian and travelling salesman problem [18, 19]. Indeed, as David, Bruce and Bill
recount below, the connections between linear programming and perfect graphs and
Hamilton cycles have occupied Vašek’s fertile mind for the past 35 years. Among his
early results was the one–two–three theorem. Defining a graph to be weakly Ham-
iltonian if there is a function on its edge set satisfying four sets of linear inequalities
that are valid for any Hamiltonian graph (three of these are straightforward, while
the fourth introduced the important notion of comb inequalities), he proved that a
weakly Hamiltonian graph is necessarily 1-tough, has a 2-factor, and is 3-cyclable
(any three vertices lie on a cycle).

Fig. 5. With a visiting speaker
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Fig. 6. With Claude Berge

As Vašek explains in a tribute to Claude Berge [32], he first encountered the
“maître” in a Plzeň bookshop in 1964, where a Russian translation of Berge’s first
book, lying in wait for him, seduced him into graph theory. He met Berge in person
at the Calgary meeting five years later, and they became close friends (Fig. 6).

At the Hypergraph Seminar in Columbus in 1972, organized by Berge and Di-
jen Ray-Chaudhuri, he proposed a now-famous and still unsolved conjecture on
hereditary hypergraphs [22]. It is informative to quote the Math. Review by Paul
Erdős, no stranger to hypergraph extremal problems:

The author states the following surprising conjecture: Let F be a family of
subsets of a finite set S such that if X ∈ F , Y ⊂ X then Y ∈ F ; consider a
subfamily of F any two sets of which intersect and which has the largest number
of sets; we can obtain such a family by considering all X ∈ F which contain a
suitable element t of S. The author proves several special cases of this beautiful
conjecture.

In a typically extravagant gesture, Vašek [41] offered $10.00 for a proof or coun-
terexample. His coauthors of this collection of combinatorial problems, David Klar-
ner and Donald Knuth, wisely appended the disclaimer “All cash awards are Chvá-
tal’s responsibility”. The reward offered for settling his conjecture on toughness was
somewhat more generous. The hereditary hypergraph conjecture has been the topic
of some twenty articles (see http://www.users.encs.concordia.ca/∼chvatal/conjec-
ture.html).

Also at the hypergraph seminar, having failed in our attempt to “get the young
genius drunk” (and then proceed to turn him into an alcoholic, thereby eliminating
him from mathematical competition), he joined forces with Laci Lovász, proving
the pretty result that every digraph has a semi-kernel, a stable set reachable from
every vertex in at most two steps [42].

It is hard to do justice to Vašek’s prolific and remarkably eclectic output during
the late 1960s and early 1970s. To mention just three further examples, he found a
colourful attractive extension of the Gallai-Roy theorem on paths in digraphs [17],
proved a theorem in plane geometry [24]—commonly referred to as Chvátal’s Art
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Fig. 7. Chvátal graph

Gallery Theorem—which determines the number of guards required to survey the
walls of a polygonal art gallery (and has prompted much research), and constructed
the smallest triangle-free 4-chromatic 4-regular graph, a beautiful graph now known
as the Chvátal graph [14] (Fig. 7):

The promise of those early years has been amply fulfilled.

2. Linear Programmer—Notes by DA

In a typically succinct fashion, the abstract of Vašek’s 1984 technical report “Cutting-
plane proofs and the stability number of a graph” [30] states his position on, and
contribution to, the connection between linear programming and combinatorics.

Many claims in combinatorics can be stated by saying that every integer solu-
tion of a specified system of linear inequalities satisfies another specific inequal-
ity. Such claims can be proved in a certain canonical way involving the notion of
cutting planes. We investigate the structure of these proofs in the particular case
where the claim is that a specified graph contains at most a specified number
of pairwise nonadjacent vertices.

Two of the paper’s important results will be stated below, but first let us look at
their origins. Vašek became interested in linear programming during his postdoc-
toral year, 1970–1971. Its usefulness as a tool for combinatorial optimization had
been spectacularly demonstrated by Edmonds a few years earlier in his efficient
solution of the weighted matching problem for graphs [50]. Of particular interest
was Edmonds’ use of the duality theorem of linear programming to produce “good
characterizations”, or what we would now call “certificates of optimality”. In the
brief period before the dark clouds of NP-hardness appeared, there was consider-
able optimism that this method would soon knock off a number of other apparently
similar problems. Three such graph theory problems that were of particular inter-
est to Vašek were finding a largest stable set, a minimum vertex colouring, and a
Hamiltonian circuit.
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Vašek spent the summer of 1971 in Quebec City, the fall at McGill, and the win-
ter of 1972 at Stanford. Under the slogan “combinatorics = number theory + linear
programming,” Vašek set out a general framework for this approach in “Edmonds
Polytopes and a Hierarchy of Combinatorial Problems” [19]. He defined the clo-
sure of a system of linear inequalities to be the set of inequalities valid for its integer
solutions. He proved that all such inequalities could be obtained by a finite process
of taking positive combinations of inequalities and rounding. This procedure gave
rise to a natural notion of the rank, now known as Chvátal rank, of the inequality,
and indeed for an integer program itself. Although the main theorem can be proved
using the finiteness of Gomory’s integer programming algorithm, [53], Vašek gave
an elementary proof that is simple enough that it has found its way into several inte-
ger programming textbooks. The integer inequalities generated are now known as
“Chvátal-Gomory cuts”. And the paper contains much more, including, naturally,
applications to independent sets, graph colouring, and Hamiltonian circuits. The
paper was submitted in May 1972.

During the time the paper was written, Stephen Cook [46] and Richard Karp [63]
announced results that were to change the landscape forever. These results are men-
tioned in the revised version of the paper, submitted in May 1973, in the concluding
remarks. After citing them he writes:

One may be tempted to believe that each class of zero-one linear programming
problems having a bounded rank possesses a polynomial time algorithm. If
this were true then, in particular, there would be a polynomial time algorithm
searching for the largest independent sets in perfect graphs.

For in the summer of 1972, Vašek had attended a meeting in Columbus, Ohio where
Lovász [67] presented his proof of the weak perfect graph theorem. As Adrian
has mentioned, Vašek had heard of perfect graphs from Berge several years ear-
lier. Lovász’s result (and independent work of Fulkerson) connected them to linear
programming. This connection was spelled out in the subsequent paper “On cer-
tain polytopes associated with graphs” [23], and was fortuitous. NP-hardness had
essentially eliminated the possibility of extending Edmonds’ methods to obtaining
polynomial time solutions to Vašek’s favourite problems for general graphs. The
game now was to find large classes of interesting graphs for which hard problems
were tractable. Perfect graphs were known to include comparability graphs, chordal
graphs and line graphs of bipartite graphs, for which finding a maximum indepen-
dent set or a minimum vertex colouring were solvable in polynomial time. A perfect
class of graphs to study was at hand. In the winter of 1972 Vašek started to consider
the problem of recognizing perfect graphs in polynomial time. He noticed that the
first two of these special classes of perfect graphs could be recognized by placing the
vertices in a special ordering. But I digress—perfect graphs will be covered by Bruce
in the next section. The paper [23] had a number of other interesting results, includ-
ing this gem: two stable sets in a graph are adjacent in the corresponding stable set
polytope if and only if their symmetric difference defines a connected graph. As a
corollary, by considering line graphs, a similar statement can be made for matchings.
Vašek’s contributions to linear programming continue with his arrival at Stanford
in the fall of 1974.
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Fig. 8. Sergeant Chvátal, taken by Adrian

The squeal of tires, a white Ford Mustang, and the sound of the Beatles “Rubber
Soul” announce Vašek’s arrival at Encina Hall, the bucolic location of Stanford’s
Department of Operations Research. The department was home to George Dantzig
himself, the father of linear programming, and benefactor of most of the doctoral
students in the department, myself included. I was then working on a dissertation in
queuing theory. Suddenly Vašek appeared in my office, cigarette in hand, and sport-
ing a headband (Fig. 8). He asked me to proof-read “Some linear programming
aspects of combinatorics” [25]. It had an abstract that read, rather unpromisingly:

This is the text of a lecture given at the Conference on Algebraic Aspects of
Combinatorics at the University of Toronto in January 1975. The lecture was
expository, aimed at an audience with no previous knowledge of linear pro-
gramming.

I was less than enthusiastic. To put this in context, like most of my classmates,
I thought I had seen the last of linear programming with the five hour compre-
hensive exam the year before. His paper opened my eyes. What we had considered
to be a dead subject was here being used to prove Sperner’s lemma, the Erdös-
Ko-Rado theorem, and . . . the pigeon hole principle!? It also contained a digest
of his two papers mentioned above. The message was clear: linear programming
belonged in the tool kit of every discrete mathematician. I was hooked—and Vašek
had a doctoral student.

Although Stanford had many famous professors (Fig. 9), it was also famous for
devouring assistant professors: 3 years of teaching the courses no one else wanted,
then off to a new job. Vašek had the unenviable task of teaching linear programming
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Fig. 9. With George Polya

to Master’s students in operations research, for most of whom mathematics was not
their strong point. Descriptions of the subject at the time tended to be rather dry,
technical, unintuitive and use lots of unfriendly notation. What was needed was
a simple, intuitive but precise introduction to the subject that would be useful to
student and working mathematician alike. During the Christmas vacation of 1975,
that was precisely what Vašek wrote. I had spent the vacation in Mexico with some
friends, and when I returned Vašek told me he had written a book on linear pro-
gramming. I was sure he was joking, but he gave me his manuscript, which was a
little over 100 pages long. I started reading it that evening, and kept reading until it
was finished. It was a masterpiece of technical writing. The manuscript circulated
quickly. Everybody read it, everybody loved it, and everybody said, “It’s perfect,
but, if you would just add a chapter on . . . it would be even better.” Meanwhile, we
students speculated that such an upstart would never get tenure by showing up the
master1.

Vašek wanted some new results that his book would be the first to contain, but
the subject had remained relatively dormant for some time. Then in his 1976 doc-
toral thesis, Bland announced pivot rules for the simplex method that did not cycle.
A particularly simple rule involved merely choosing each candidate variable with
smallest subscript. In the summer of 1976 Vašek returned to Montreal to work at
the Centre de Recherches Mathématiques. Having just finished the first draft of my
thesis, I expected it would be a month of Sundays before he got around to reading it.
Suddenly Vašek called me up and invited me to come to Montreal. We would work
together to see whether Klee and Minty’s examples also applied to Bland’s rule, I
would repeat the Kuhn-Quandt experiments for it, and he would read my thesis. It
was half a lifetime ago: Vašek was 30. Ivo Rosenberg was away and kindly let us
stay in his house. To give Vašek more reading time, I was his driver in a clapped
out car that barely made it up the hill to the CRM. Filling the tank was a lengthy
affair as it also required filling the oil and changing the spark plugs. The blur of
cafés, restaurants, strip clubs, beautiful women and 24-hour flower shops quickly
convinced me that Montreal was where I would look for a job. We ended up getting

1 We were wrong, he got it.
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Fig. 10. With Jin, David and a bijin

Fig. 11. Nikko

the results on Bland’s rule, but needless to say the paper [6] did not get written until
after we went back to California.

Returning to Stanford in the Fall of 1976, Vašek diligently set out to keep all
of those people happy who had read his manuscript. He first learned, then wrote
chapters on, implementation, networks, games, applications, geometry, generalized
upper bounding, Dantzig-Wolfe decomposition and so on. The work continued
after he moved back to Montreal in 1977, first at the Université de Montréal, then
at McGill from 1978. The long, brutal Montreal winters of those days provided
plenty of time to work on the book, but the summers were another matter.

In the summer of 1978 Vašek summoned me to Paris from Belgium, where I was
doing a postdoc. We discussed the possibility of making our living off the glitterati
of Saint Tropez during an exquisite lunch with Jean-François Maurras that lasted
most of an afternoon. The next day Vašek and I jetted off to the Côte D’Azur to
try our luck with a new career. Needless to say, we were back at McGill by Autumn.
The following summer we went to Japan and met Jin, as described in the Preface to
this issue (Figs. 10, 11).

During the next few years, Vasek dutifully devoured all of the material sug-
gested to him for his expanded book, thoroughly digested it, and then rewrote it
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in the same clear concise style that characterized his original manuscript. History,
ever willing to repeat itself, records that while the text was in its final stages, Kha-
chian [64] announced the first polynomial time linear programming algorithm, the
ellipsoid method. The ellipsoid algorithm made it into the text as an appendix, an
exposition that is still one of the best available, and is widely reproduced. When Lin-
ear Programming [29] finally appeared in 1983, it was immediately proclaimed the
definitive text on the subject. The original manuscript, recognizable, but not quite
intact, is the first part of the book and a complete course in itself. On the cover was
a reproduction of a painting by his close friend, the artist François de Lucy, which
was an image that Vašek said reminded him of all the paper crumpled up along the
way.

For the next thread of the story, we go back to Stanford. In the mid-1970s there
was still hope that the P = NP question might be tractable. The conventional wis-
dom was that these classes were different, and computer scientists were using the
tools of their trade to try and resolve the issue. If P and NP really were different,
then cutting planes ought to be weak for solving hard integer programs. This is
what Vašek proved for a related, but weaker proof system, for one of his favourite
problems, determining the size of the largest independent set in a graph [26]. The
paper is long and the proof is difficult. The paper contains a prescription for gen-
erating random graphs for which with high probability every proof in this system
has exponential length. Similar results, for which the arguments are much simpler,
were given for the knapsack problem in [28]. The much-cited paper on randomly
generated hard examples for resolution [45], written jointly with Szemerédi, is the
climax of this series.

Now we return to Vašek’s 1984 technical report, the abstract of which began this
section, and its two main results. For any vertex v of a graph G associate a variable
xv, and consider the systems

∑

v∈C

xv ≤ 1 for all cliques C in G (1)

−xv ≤ 0 for all vertices v of G

and
∑

v∈G

xv ≤ α(G) (2)

where α(G) is the size of the largest independent set in G. His first theorem reads:

Theorem 1. There are arbitrarily large graphs G and a positive constant ε such that
the depth of every cutting-plane proof of (2) from (1) exceeds εn.

His second theorem reads:

Theorem 2. There are arbitrarily large graphs G with α(G) = 2 such that the depth
of every cutting-plane proof of (2) from (1) exceeds 1

3 ln n.
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The method of the 1984 paper was extended and applied to a wide variety of
other combinatorial problems in a subsequent paper with Bill Cook and Mark
Hartmann [36]. One of the applications was to two objects dear to my heart, the
cut and metric polytopes, so I cannot resist including it here. The cut polytope is
the convex hull of zero–one vectors defined by the edge sets of cuts in a complete
graph. The metric polytope its natural relaxation defined by considering all triangle
inequalities on the same set of variables. An important class of facets of the cut
polytope (see for example [49]), called pure hypermetric facets by Michel Deza, are
defined for any complete graph H on 2t + 1 vertices by

∑

e∈E(H)

xe ≤ t (t + 1). (3)

The case t = 1 is an example of a triangle inequality. It is shown in [36] that the depth
of any cutting place proof of (3) from the metric polytope is at least (t − 1)/2.

By 1983 with the book out of the way, Vašek started to focus his attention on
perfect graphs, and the strong perfect graph conjecture. He gathered an exceptional
group of talented graduate students, the exploits of whom Bruce describes below.
For me, a sabbatical year in Japan in 1983–1984 put me so far behind the group that
to catch up was impossible. Soon after, Vašek was to leave Montreal and it would
be almost 20 years before he returned:

Un Canadien errant
Banni de ses foyers
Parcourait en pleurant
Des pays étrangers2.

It was the end of an era.

3. Perfectionist—Notes by BR

In a typically irreverent fashion, Vašek’s book Linear Programming begins with a
quote which captures one of the strengths of this polished gem.

Suppose you want to teach the cat concept to a very young child. Do you explain
that a cat is a relatively small, primarily carnivorous mammal with retractile
claws, a distinct sonic output, etc.? I’ll bet not. You probably show the kid a
lot of different cats saying kitty each time until it gets the idea. To put it more
generally, generalizations are best made by abstraction from experience3.

That he routinely introduces complex ideas via a sequence of simple and crystal-
clear examples is just one of the reasons Vašek is a great teacher. Once he had settled
at McGill, Sensei gathered around him a group of disciples, in whom he instilled
his passion for perfect graphs. We were attracted to him like moths to a flame and
began to burn with the same inner fire.

2 From “Un Canadien Errant”, by Antoine Gérin-Lajoie (1837).
3 R.P. Boas, Am. Math. Mon., 88, 727–731 (1981).
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Perfect graphs were defined by Berge, a very close friend whom Vašek sometimes
called Master. Berge’s definition was motivated by a question posed by Shannon on
the asymptotic transmission rates of noisy channels [73]. A graph G is said to be
perfect if for each of its induced subgraphs H , there is a set of α(G) cliques covering
its vertices. In 1960, Berge observed that a chordless cycle of length 2k + 1, k ≥ 2,
cannot be covered by k edges. He also observed that the complement of such a cycle
cannot be covered by two cliques. Hence any graph containing an induced odd
cycle of length at least five or the complement of such a cycle is not perfect. After
searching in vain for other examples of imperfect graphs, Berge made the following
conjecture [8]:

A graph G is perfect precisely if neither G nor G contains an induced odd cycle
of length at least five.

This conjecture became known as the strong perfect graph conjecture. The term
weak perfect graph conjecture was reserved for its corollary

If a graph is perfect then so is its complement.

which was proved by Lovász in 1971 [66].
Lovász’s result is equivalent to the statement that the vertices of every induced

subgraph H of a perfect graph can be covered by α(H) cliques. Hence the depth of
the cutting plane proof of (2) from (1) is zero for all such graphs. This is equivalent
to saying that for any 0−1 weight vector w, we can choose an integer-valued x∗
in the fractional stable set polytope of G [the polytope defined by the set (1) of
inequalities] which maximizes wx over this polytope.

In [23], Vašek noted Lovász’s proof of the WPGC implies that much more is
true. He showed that we can actually choose an integer valued x∗ maximizing wx

for any weight vector w4. Put another way, the fractional stable set polytope has
only integer vertices. Thus, we can characterize some of those 0–1 matrices A such
that Ax ≤ 1, x ≥ 0, has only integer vertices as the fractional stable set polytopes of
perfect graphs. It turns out that all such matrices can be characterized in this fashion
(provided we remove redundant constraints). Thus, characterizing perfect graphs
yields a characterization of a natural class of integer programs which are solvable in
polynomial time using Khachian’s linear-time algorithm for linear programming.
This consequence of Vašek’s observation spurred interest in perfect graphs in the
combinatorial optimization community.

Despite the strength and beauty of Vašek’s result, it does not imply that we can
determine α(G) for perfect G by constructing and solving this LP, as the number

4 To prove this statement it is enough to prove it for integer valued w (since we can approxi-
mate reals by rational and renormalize rationals to integers). For any such w, he considered
an associated graph Gw whose vertex set is the union of stable sets S1, . . . Sn where |Si | = wi

and u ∈ Si is joined to v ∈ Sj precisely if vivj is an edge of G. It is not hard to see that the
weight of a maximum weight stable set x∗ of G is the same as the size of the largest stable
set of Gw. Lovász’s result easily implies that Gw is perfect, and hence has a covering using
α(Gw) cliques. Each of these cliques corresponds in an obvious way to a clique of G. So we
obtain a set of wx∗ cliques of G such that each vi is contained in wi of these cliques. The
corresponding inequalities of (1) now show that wx∗ maximizes wx over this polytope.



54 D. Avis et al.

of cliques in a perfect graph G with n vertices may be as large as 2n/2. However,
in 1979 Grötschel et al. [57] wrote a seminal paper which showed that actually the
result can be combined with the ellipsoid method to find maximum weight stable
sets in perfect graphs in polynomial time.

With the optimization question answered, Vašek turned his attention to possible
characterizations of perfect graphs. As David has mentioned, one of his approaches
involved obtaining characterizations via vertex orderings. This work is discussed in
Ryan Hayward’s paper in this volume [60]. We will focus on a different approach.
We introduce it with a quote from a tribute to Berge written by Vašek [34]:

There are theorems that elucidate the structure of objects in some class C by
showing that every object in C has either a prescribed and relatively transparent
structure or one of a number of prescribed structural faults along which it can
be decomposed.

Vašek decided to apply this paradigm to Berge Graphs, i.e. graphs G such that
neither G nor its complement contains an induced odd cycle with at least five vertices.
He hoped to thereby both prove the strong perfect graph conjecture and develop a
polynomial time recognition algorithm for the class of perfect graphs (see [31] where
he first suggested this approach).

With Vašek leading the way, we went to work. I started my M.Sc. in January of
1983 and immediately began to attend a weekly seminar on perfect graphs. Other
students of Vašek who attended were Chính Hoàng, Ryan Hayward, and Stefan
Olariu. David Avis, Sue Whitesides, and Jean-Marie Bourjolly put in occasional
appearances. The atmosphere was electric. The seminars were scheduled for three
hours but could go on for much longer. If we started to play backgammon they
could last all night.

Initially, Vašek simply gave us a long list of problems and asked us to try and solve
them. The seminar was devoted to the presentation of solutions and the discussion
of approaches. Through solving the problems, we learnt of a number of special types
of perfect graphs to which the paradigm had already been successfully applied: tri-
angulated graphs had been decomposed using clique cutsets; comparability graphs
had been decomposed using homogeneous sets.

Once we were sufficiently bloodied, the Master began to educate us in earnest.
Fonlupt and Uhry had recently decomposed the class of graphs in which every odd
cycle of length five had at least two chords (these graphs were called Meyniel, as it
was Meyniel who proved they were perfect), using the so-called amalgam decom-
position. Sensei prepared a crystal clear set of notes explaining their complicated
decomposition procedure and led us through them.

It was in the spring of 1983 that Vašek introduced two important notions: star
cutsets and skew partitions. A star cutset is a cutset containing a vertex v which sees
all the other vertices of the cutset. A skew partition is a partition of V (G) into two
sets A and B such that A induces a disconnected subgraph of G and B induces a
disconnected subgraph of G. We note that if (A, B) is a skew partition of G then
(B, A) is a skew partition of G. We also note that if G has a star cutset B with at
least two vertices then (V − B, B) is a skew partition of G.
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Fig. 12. With Bill and Najiba

In a seminal paper [33], Vašek proved that no minimal imperfect graph con-
tains a star cutset. He also observed that this result implied that minimal imperfect
graphs had no homogenous sets, had no clique cutsets, and did not permit amalgam
decompositions. Thus star cutsets could be used to prove the perfection of almost all
the special classes of Berge graphs which had been shown to be perfect. Spurred on
by Vašek, Ryan Hayward [59] proved that weakly triangulated graphs5 are perfect
using the existence of star cutsets in these graphs. These last two results suggested
that star cutsets were a powerful tool. Vašek thought that skew partitions might
be even more important because of their self-complementarity, which mirrored this
property of perfect graphs. In [33], he conjectured that no minimal perfect graph
permits a skew partition.

Motivated by self-complementarity, he turned his attention to bull-free Berge
graphs. A bull is the graph obtained from a triangle by adding two pendant vertices
attached to distinct vertices of the triangle; it is self-complementary. Vašek, working
with Najiba Sbihi (Fig. 12) proved that bull-free Berge Graphs are perfect [44]. In
order to do so, they needed to introduce a new decomposition, the homogenous
pair6. They showed that no minimal imperfect graph contains a homogeneous pair.
Using this decomposition and star cutsets, they managed to show that every bull-free
Berge graph is perfect.

Vašek’s intuition as to the decompositions needed to prove the strong perfect
graph conjecture were spot on. Indeed, Chudnovsky, Robertson, Seymour, and
Thomas recently proved that every Berge graph either:

5 G is weakly triangulated if neither G nor G contains an induced cycle of length at least five.
6 A homogenous pair consists of two disjoint sets of vertices S1 and S2 such that every vertex
outside of S1 ∪ S2 is adjacent to all of S1 or none of S1 and is adjacent to all of S2 or none of
S2. Furthermore, we insist that 3 ≤ |S1 ∪ S2| ≤ |V | − 2.
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Fig. 13. The first Barbados ever

(a) is in one of five basic classes of perfect graphs (line graphs of bipartite graphs,
their complements, bipartite graphs, their complements, or double split graphs),
or

(b) permits one of three partitions (a proper 2-join, a homogeneous pair, or a special
type of skew partition which they call balanced7).

Of the three decompositions they used, two were defined by Vašek and the third
was also one on which he focused the perfect graph community’s attention. Indeed,
Vašek and I co-organized a conference on perfect graphs in Princeton in 1993. The
only talks were by Conforti and Cornuejols who had recently decomposed balanced
graphs using 2-joins and some other star-cutset like decompositions. We thought
that these ideas could be the last pieces needed to solve the perfect graph puzzle.
This was indeed the case. Thus Vašek’s vision as always was excellent, and the work
carried out in those heady days in the mid 1980s played an important role in the
resolution of the strong perfect graph conjecture.

Of course, Vašek was not satisfied with just studying perfect graphs during this
period (see [43]). He would not be tied down in this way [35]. He went to the World
Backgammon Championship in 1984, organized the first mathematical workshop
at McGill’s Bellairs Research Institute (Fig. 13), made friends with J.P. Donleavy
(Fig. 14) and Panther, took his cubs to a conference in Hakone organized by Jin
Akiyama, and wrote a book which beginners could use to learn the first two hundred
kanji.

He also maintained two interests David has already mentioned: trying to find
large classes of problems which require exponential time to solve when attacked
using a standard approach, and obtaining solutions to integer programs from solu-
tions to their fractional relaxations. In [45], he and Szemerédi showed that for every
k ≥ 3 and c ≥ 2k, almost every satisfiability instance of cn clauses is unsatisfiable but

7 The first balanced skew cutsets which were shown not to occur in perfect graphs were the
T -cutsets. This was done by Chinh Hoang while he was a student of Vašek [61]. For more on
the history of this type of skew cutset and the role Vašek played see [69].
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Fig. 14. Donleavy got his pot to piss in, taken by Adrian

any resolution-based proof of its unsatisfiability requires exponential time. In [27],
he showed that the chromatic number of any graph is O(log n) times its fractional
chromatic number8. Actually, he proved something stronger. He showed that a sim-
ple greedy heuristic could find a solution to any weighted set cover9 problem whose
size was at most log n times the cost of an optimal fractional solution.

I graduated in 1986; it was a third of a lifetime ago and Vašek was 40. David had
been like a brother to Vašek, I felt more like a son. This was not because Vašek had
put distance between us. It was against Vašek’s religion to pretend that his position
and academic credentials somehow put him on a different plane from his students
or anyone else. Even the standard roping in of graduate students for joe jobs in
return for all the time you invested in them was anathema to him. There was an
immediateness, integrity and essential humanity in Vašek’s interactions, which few
if any other supervisors would have matched. And we spent a lot of time playing
as equals: bedtime stories at the Ritz, randomly chosen shops in Tokyo, the Salon
de Livres in Paris and Chez Paris, Nena Hagen in both English and German, and
Blondie’s immortal

I’m in the phone booth, it’s the one across the hall. If you don’t answer then I’ll
just ring it off the wall.

Despite this closeness, Vašek was above all my mentor. Indeed I had been floun-
dering and unmotivated as an undergraduate. My decision to go to graduate school
and become an academic was inspired solely by my exposure to his brilliant lectures
and charming wit when I took a course from him in my last year.

8 A fractional α-colouring is an assignment of non-negative weights to the stable sets of G
so that the sum of the weights of the stable sets containing each vertex is one. The fractional
chromatic number is the minimum α for which G has a fractional α-colouring.
9 In a set cover problem we are given some subsets of a ground set and need to find the
minimum number of subsets whose union contains the ground set. In graph colouring, the
ground set is the vertex set and the subsets are the stable sets.



58 D. Avis et al.

His mentoring continued throughout graduate school. We had countless meals
at the Coffee Mill on Mountain Street. After acknowledging the waitress with their
standard exchange10, lighting a cigarette, and starting to eat, he would begin to
explain a new theorem to me. Possibly one of his results. Possibly a breakthrough
obtained by another researcher. These recitals never failed to fascinate me and I
spent as much time with Vašek as he allowed.

I hope that the reader who thinks I have spent too much time discussing my
relationship with Vašek will forgive me. I have done so because I do not believe my
experience was unique. Vašek brought magic into my life, from what colleagues have
told me, others feel touched by this magic even if they have just listened to one of
his lectures or chatted with him for 15 minutes.

In short then, during my years as a student, Vašek was a pussycat. I often find
myself, when faced with a decision as to what to do as a supervisor asking: what
would the kitty do? I do not always live up to his example but I am a better man for
trying.

4. Travelling Salesman—Notes by WC

In a typically modest fashion, Vašek [4] introduced our computational work on
solving instances of the travelling salesman problem.

Dantzig, Fulkerson, and Johnson showed a way to solve large instances of the
TSP; all that came afterward is just icing on the cake. The purpose of the pres-
ent paper is to describe some of the icing we have added on top of the previous
layers.

This short remark was the subject of much discussion, leading to pictures of cakes
in lectures [72] and writings [1, 2, 76].

The TSP asks for a minimum cost Hamiltonian circuit, or tour, in a graph
G = (V , E) with edge costs; the original 1954 paper of Dantzig et al. [48] presents
the solution of a 42-city instance of the problem via a sequence of LP relaxations.
Dantzig et al. record a tour as a 0–1 vector x = (xe : e ∈ E), where xe = 1 if and
only if e is in the tour. An LP relaxation for the TSP consists of a family of linear
inequalities satisfied by all tour vectors. A modest-sized starting point consists of
bounds 0 ≤ xe ≤ 1, for each edge e, and equations

∑
(xe : e meets vertex v) = 1, (1)

for each vertex v. Such an LP can be easily solved with the simplex algorithm, and
a dual solution provides a lower bound on the cost of any tour. To improve this
bound, Dantzig et al. locate additional inequalities that are valid for all tours but
violated by the LP optimal solution x∗. A selection of these inequalities, called cut-
ting planes, or just cuts, are added to the relaxation and the process is repeated. The
primary supply of cuts in [48] are the subtour constraints

∑
(xe : e has exactly one end in S) ≥ 2

10 Greetings Comrade, formerly Hello.
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for each proper subset S ⊂ V . A collection of these cuts were found by hand in their
work. Together with two ad hoc inequalities, the subtour cuts formed a relaxation
that established the optimal value of a tour through their 42 cities.

Vašek was of course in a perfect position to focus attention on the ground break-
ing work of Dantzig et al. It was Vašek [18] himself who introduced the concept of
comb inequalities that brought the cutting-plane approach to new heights, follow-
ing Gomory’s [54] call to action and Hong’s [62] branch-and-cut computer code.
Vašek’s theme was taken up by Martin Grötschel and Manfred Padberg [58], who
championed the use of combs in the TSP in the late 1970s and 1980s.

In Grötschel and Padberg’s work a comb consists of subsets T0, T1, . . . , Ts of V ,
such that s is odd and at least 3, the sets (Tj : j = 1, . . . , s) are pairwise disjoint,
and for each j ≥ 1 the set Tj contains at least one vertex in T0 and at least one vertex
not in T0. Vašek called T0 the handle and (Tj : j = 1, . . . , s) the teeth of the comb;
in his version each tooth must intersect the handle in exactly one vertex. Every TSP
tour satisfies the comb inequality

s∑

j=0

∑
(xe : e has exactly one end in Tj ) ≥ 3s + 1.

The inclusion of combs as a source of cutting planes is a powerful extension of
the subtour cuts, as can be seen in the success of the Grötschel-Padberg-led work
[47, 55, 56, 68]. Along with these computations, combs have also been the focus
of many theoretical studies. An important open question here is to determine the
complexity of the separation problem for combs, that is, given an LP vector x∗, find
a violated comb inequality if one exists; no polynomial-time algorithm is known for
the problem and it is also not known to be NP -hard.

After the publication of Vašek’s comb paper in 1974, he remained interested in
the TSP, mainly through research on Hamiltonian graphs. In was in Oberwolfach,
January 1987, where we began our TSP work together. At an evening problem ses-
sion, Martin Grötschel discussed several questions regarding the Chvátal rank of
the subtour relaxation of the TSP. The subtour relaxation consists of all subtour
inequalities, together with the Eq. (1), for all vertices, and the bounds 0 ≤ xe ≤ 1,
for all edges. The main question posed by Grötschel was to show that the Chvátal
rank of the relaxation cannot be bounded above by any constant as the number of
vertices increases. It was known that the rank was at least two, but no further lower
bounds were available.

After a brisk walk down to the village pub, Vašek proposed that we jump on the
problem, feeling that a couple of glasses of beer, several kirschwassers, and a study
of non-Hamiltonian graphs would be a good place to start. As usual, Vašek was
right on the money; a class of graphs from his flip-flop paper [20] was just what the
doctor ordered. When a break was called for we joined in a few songs with the locals
at the pub, who quickly pronounced Vašek as the most likeable mathematician ever
to set foot in their fair valley. We managed to come away with enough notes to settle
Grötschel’s problem, showing that the Chvátal rank grew at least linearly with the
number of vertices.
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Fig. 15. With Marketa

The subtour relaxation result was the starting point for a lengthy study of lower
bounds on the rank of other polyhedra, carried out by Vašek, Mark Hartmann, and
myself [36]. As this work drew to a close, it seemed logical to attempt to turn the
ideas into an attack on solving instances of the TSP. Inspiration here came from a
second session from the 1987 Oberwolfach meeting, where Manfred Padberg pre-
sented fresh work with Giovanni Rinaldi on the computation of an optimal tour
for a 2,392-city instance. We thought we had enough tricks up our sleeves to give
the area another push, and decided on February 27, 1988, that it was time to give it
a go.

The next day we purchased a desktop PC from a vendor in lower Manhattan.
Curiously, when the main technician at the shop learned that we were mathema-
ticians he warned “You guys aren’t going to try to solve that travelling salesman
problem, are ya?” But that is just what we had in mind. A few days later we con-
tacted Dave Applegate, a star PhD student working with Ravi Kannan at Carnegie
Mellon, and the project was up and running. Except for an important break for
Vašek’s wedding with Marketa (Fig. 15) we worked full time on the TSP. Initially
we attempted various combinatorial techniques for obtaining lower bounds, but we
gradually drifted back towards traditional LP-based methods. This period came to
a head in a crash coding session over two days in April 1990 in Montreal, producing
a simplex algorithm specially tailored for the TSP. Although this worked fairly well,
the code could not beat Bob Bixby’s newly released general simplex implementation
CPLEX 1.0.

Later in April 1990 we arrived at Rice University for a TSP Workshop organized
by Bob Bixby at the Center for Research in Parallel Computing. Our work was a
bit of a mystery, but it was known that we had been studying the TSP for the past
two years. When our session came around, Vašek began his lecture with a line by
line history of the largest solved instances: Dantzig-Fulkerson-Johnson 42 cities,
Held-Karp 57 cities, . . . , Padberg-Rinaldi 2,392 cities. Keeping the bottom portion
of his slide covered, he noted the point in 1988 where we “got into the game.” With
the crowd on its heels, he slowly revealed the final line: Applegate-Chvátal-Cook 17
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cities. This was an exaggeration of the state of our project, but it was true that we
had more ideas than computational results at that point.

In the aftermath of the meeting, Vašek kept reminding us that you need to get
up pretty early in the morning if you are going to beat the simplex algorithm. We
thus made a wise move and convinced Bob Bixby to join our project. With Bob
churning out ever faster versions of the LP solver, we focused our attention on the
generation of cutting planes to keep the solver busy.

In this work, Vašek viewed the search for cuts as a two-step process. First, by
fair means or foul, he would locate a flaw in our current LP solution x∗, that is,
a property of x∗ that could not be possessed by a convex combination of tours.
Second, following the theme of his cutting-plane work in the 1970s, he would find
a way to expose this flaw via a linear inequality. This is the method employed in a
heuristic separation algorithm for combs based on the consecutive ones property
([5], Chap. 8). In this case, the flaw is specified by a family F of subsets of vertices
such that each member S ∈ F satisfies

∑
(x∗

e : e has exactly one end in S) = 2,

no member of S contains vertex v0, and F does not have the consecutive ones prop-
erty. To spot such a flaw, we can employ the linear-time algorithm of Booth and
Lueker [9] for testing the consecutive ones property. An immediate cutting plane
exposing F is

∑

S∈F

∑
(xe : e has exactly one end in S) ≥ 2|F | + 2,

but this can be weak in the sense that it may be the sum of smaller valid inequalities.
A nice twist, however, follows from an old theorem of Tucker [74], implying that a
minimal consecutive-ones flaw F is in fact a three-toothed comb, yielding a method
to spot these much sought-after cuts.

Ideas such as the consecutive-ones heuristic were usually the fruit of long nights
in cafes, staring at drawings of x∗ vectors for potential flaws. As the TSP project con-
tinued, Vašek became convinced that the entire two-step discovery process could be
automated, at least to some degree. Given the usually dim cafe lighting, the search
for flaws was often limited to local regions of x∗, with the remainder of the vector
considered as one super-vertex that could be visited any even number of times. This
shrinking of the vector can be viewed as a linear mapping φ that takes an LP solu-
tion into a space of relatively small dimension. If the region under examination is
small enough, then a computer code should be able to determine if φ(x∗) can be
written as a convex combination of mapped tours, and, if not, produce a cutting
plane aT x̄ ≤ b in the mapped space. By substitution, any mapped inequality gives
a cutting plane aT φ(x) ≤ b for x∗. Vašek worked out examples by hand showing
that this general framework could produce strong TSP cuts, and the method grew
into the local cuts procedure ([5], Chap. 11) that is incorporated into our Concorde
code. This in turn has led to the use of local cuts in other problem areas, such as
Steiner-tree computations [3] and mixed-integer programming [51].

Vašek also pursued the idea of turning validity proofs of inequalities into algo-
rithms for producing cutting planes. The technique is to take apart the proof and
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build structures that allow each step to be carried out constructively. An example
here is the necklace heuristic for combs ([5], Chap. 8), modelled after the algebraic
proof of comb inequalities as a Chvátal-Gomory cut. The basic object in this case
is a domino, consisting of a pair (A, B) of subsets of vertices such that A ∩ B = ∅
and A ∪ B 
= V . Dominoes are candidates for teeth in a comb, where A is the set
of vertices in the handle and B is the set of vertices not in the handle. The heuristic
works with certain large families of dominoes, selecting odd sets for the teeth by
solving linear systems over GF(2). The linear systems produce multipliers needed
in a Chvátal-Gomory derivation of a comb from subtour constraints. This method
has been pushed further in work by Fleischer and Tardos [52] and Letchford [65],
and it has served as one of the starting points for the study of mod-2 cuts in other
problem areas [11, 12, 71].

All of this cutting-plane work and more was carried out with the concrete aim of
solving large instances of the TSP. Starting with the solution of a 3,038-city exam-
ple in 1992, improved versions of the Concorde code gradually worked through
the entire TSPLIB [70] challenge set. The last instance, consisting of 85,900 cities
from a VLSI application, fell in 2006. This success is a triumph of Vašek’s ideas, but
his legacy goes way beyond these computations. The mathematical elegance Vašek
brought to the TSP will guide computational work long after new TSP records have
come and gone. It is difficult to predict where TSP research will head in the coming
decades, but it is certain that progress will continue if the community follows Vašek’s
lead and bashes on regardless (Figs. 12, 13).

Acknowledgements. We would like to thank Ryan Hayward for sharing his recollections, and
for a careful reading of the manuscript.
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