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HAMILTON CYCLES

1 A theorem that involves degrees of vertices

During his visit to University of Waterloo in the fall of 1970, Erdős gave a lecture
for its Department of Combinatorics and Optimization and presented there a
proof of his fresh refinement of Turán’s theorem:

Theorem 1.1 (Erdős [10])). Let r be an integer greater than 1. For every graph
G with ω(G) < r, there is a graph H such that

(i) G and H share their vertex-set V ,

(ii) dG(v) ≤ dH(v) for all v in V ,

(iii) H is complete (r − 1)-partite.

(The fourth property of H in Erdős’s theorem, if dG(v) = dH(v) for all v in V ,
then H = G, is an icing on the cake irrelevant to the discussion that follows.)

I was lucky to be in the audience. As I sat and listened, the beauty of this
theorem took my breath away. Let me elaborate.

When G is a graph and r is a positive integer, the property that ω(G) ≥ r
can be certified by pointing out r pairwise adjacent vertices in G; finding such
a certificate may be extremely difficult, but verifying it is straightforward and
quick. By contrast, no easily verifiable certificate of the property that ω(G) < r
is known.

To speculate about hypothetical certificates of ω(G) < r, let us say that a graph
G with ω(G) < r is maximal with respect to this property if adding any edge to
G produces a graph H such that ω(H) ≥ r. The property that ω(G) < r could
be certified by exhibiting a graph H that is maximal with respect to ω(G) < r
and showing that G is a subgraph of H. However, this trick only shifts the
burden of proof from all graphs with ω < r to all maximal graphs with ω < r:
how do we certify that ω(H) < r? One way of doing this would be first to
compile a catalogue of all maximal graphs with ω < r and then to simply point
out H in this catalogue. Unfortunately, the catalogue is not only very large,
but also very complex: some of its items H are wild in the sense that describing
them is difficult. Yet the catalogue also includes items that are tame in the sense
that describing them is easy: these tame items are the complete (r− 1)-partite
graphs.
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Theorem 1.1 shows that the tame items play a special role in the catalogue:
for every wild item G there is a tame item H such that dG(v) ≤ dH(v) for all
vertices v of these two graphs. This can be paraphrased as follows.

Theorem 1.2 (another form of Theorem 1.1). Let r be an integer greater than
1 and let d1, . . . , dn be an integer sequence. If there is no complete (r−1)-partite
graph H with vertices v1, . . . , vn such that dH(vi) ≥ di for all i, then every graph
G with vertices v1, . . . , vn such that dG(vi) = di for all i has ω(G) ≥ r.

If G is a graph with vertices v1, . . . , vn, then the sequence dG(v1), . . . , dG(vn)
is called the degree sequence of G. Theorem 1.2 describes a large set of integer
sequences such that all graphs G with these degree sequences have ω(G) ≥ r,
but it does not describe all of them. For example, if 3 ≤ r ≤ n− 1, then there
is a unique graph G that has

r − 3 vertices of degree n− 1,
3 vertices of degree r − 1,

n− r vertices of degree r − 3,
and this graph has ω(G) = r, but Theorem 1.2 does not guarantee that ω(G) ≥
r: the complete (r − 1)-partite graph K(n− r + 1, 2, 1, . . . , 1) has

r − 3 vertices of degree n− 1,
2 vertices of degree n− 2,

n− r + 1 vertices of degree r − 1.
Nevertheless, Theorem 1.2 is the best theorem of its kind.

To explain in what sense it is the best, let us say that a sequence e1, . . . , en
majorizes a sequence d1, . . . , dn if, and only if, ei ≥ di for all i. Theorem 1.2
asserts that ω(G) ≥ r if the degree sequence of G is not majorized by by a degree
sequence of any complete (r − 1)-partite graph. Additionally, let us say that a
property of degree sequences is monotone if, with every degree sequence d that
has this property, all degree sequences that majorize d have the property, too.
Trivially, a monotone property of degree sequences forces ω(G) ≥ r only if the
degree sequence of G is not majorized by by a degree sequence of any complete
(r−1)-partite graph. It follows that all theorems asserting that some monotone
property of degree sequences forces ω(G) ≥ r are subsumed in Theorem 1.2.

To put this observation in different terms, let Dn denote the set of all degree
sequences of graphs on n vertices and let Ωn,r denote the set of all d in Dn for
which every G with degree sequence d has ω(G) ≥ r. A subset U of Dn is said
to be upward closed if

d ∈ U , e ∈ Dn, e majorizes d ⇒ e ∈ U .

Since the union of two upward closed sets is upward closed, the union of all
upward closed subsets of any set S of degree sequences is upward closed; let
S↑ denote this largest upward closed subset of S. (The degree sequence in the
preceding example, r− 3 terms n− 1, 3 terms r− 1, n− r terms r− 3, belongs
to Ωn,r−Ω↑n,r.) Theorem 1.2 decribes Ω↑n,r with n ≥ r ≥ 2: if a degree sequence
fails to satisfy its condition, then it is majorized by a degree sequence outside
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Ωn,r, and so it does not belong to Ω↑n,r. What excited me most about Erdős’s
Theorem 1.1 was that it blazed a trail: it displayed a template for theorems
that infer properties of graphs from properties of their degree sequences. For
instance, a graph is called hamiltonian if it contains a Hamilton cycle, which
means a cycle passing through all its vertices.

The property of being hamiltonian is like the property ω(G) ≥ r in several re-
spects. The claim that a graph G is hamiltonian can be certified by pointing
out a Hamilton cycle in G; finding such a certificate may be extremely difficult,
but verifying it is straightforward and quick. By contrast, no easily verifiable
certificate of the claim that G is nonhamiltonian is known. Let us say that a
nonhamiltonian graph is maximal with respect to this property if adding any
edge to this graph produces a hamiltonian graph. The claim that G is non-
hamiltonian could be certified by exhibiting a maximal nonhamiltonian graph
H and showing that G is a subgraph of H. However, this trick only shifts the
burden of proof from all nonhamiltonian graphs to all maximal nonhamiltonian
graphs: how do we certify that H is nonhamiltonian? One way of doing this
would be first to compile a catalogue of all maximal nonhamiltonian graphs and
then to simply point out H in this catalogue. Unfortunately, the catalogue is
not only very large, but also very complex: some of its items H are wild in the
sense that describing them is difficult.

My doctoral advisor Crispin Nash-Williams (1932–2001) coined in [13] the term
forcibly hamiltonian for degree sequences d such that every G with degree se-
quence d is hamiltonian; by 1970, there was a progression of theorems ([9, The-
orem 3], [15], [2]) that described larger and larger upward closed sets of forcibly
hamiltonian sequences; having heard Erdős’s lecture, I began to wonder if there
was a neat description of the largest upward closed set of forcibly hamiltonian
sequences.

Let us say that a degree sequence e strictly majorizes a degree sequence d if e
majorizes d and e 6= d; let us say that a graph G is degree-maximal with respect
to some property if G has the property and no graph with a degree sequence
that strictly majorizes the degree sequence of G has the property. Erdős’s
Theorem 1.1 amounts to a neat catalogue of all degree-maximal graphs G with
ω(G) < r; I was led to look for a catalogue of all degree-maximal nonhamiltonian
graphs G.

During the Christmas break, I compiled the catalogue of all degree-maximal
nonhamiltonian graphs G with n vertices for n = 3, 4, 5, 6, 7 and then I saw a
pattern: just like in Erdős’s prototype, graphs in the catalogue were tame in
the sense of being easily described. In each of them, the vertex set could be
split into three pairwise disjoint nonempty parts A,B,C such that |A| = |B|;
every vertex in A was adjacent to all the remaining vertices, the vertices in C
were pairwise adjacent, and there were no other edges. (To see that every such
graph is nonhamiltonian, observe that the removal of A breaks it into |A| + 1
connected components, namely, the |A| isolated vertices in B and the nonempty
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clique C. This could never happen if the graph contained a Hamilton cycle:
the removal of A would break the cycle into at most |A| segments and these
segments would hold the rest of the graph in at most |A| pieces.)

In the notation of [4], each of these graphs can be specified as Kk∨(Kk+Kn−2k)
for some positive integer k less than n/2. Here, G+H denotes the disjoint union
of G and H, which is the graph consisting of a copy of G and a copy of H that
have no vertices in common; G∨H denotes the join of G and H, which is G+H
with additional edges that join every vertex in the copy of G to every vertex in
the copy of H. In this Kk ∨ (Kk + Kn−2k), the vertex set of the Kk is A, the
vertex set of the Kk is B, and the vertex set of the Kn−2k is C.

Now I knew what I had to prove:

Theorem 1.3. Let n be an integer at least 3. For every nonhamiltonian graph
G on n vertices, there is a graph H such that

(i) G and H share their vertex-set V ,

(ii) dG(v) ≤ dH(v) for all v in V ,

(iii) H = Kk ∨ (Kk +Kn−2k) for some positive integer k less than n/2,

(A fourth property of H, if dG(v) = dH(v) for all v in V , then H = G, is trivial
since this H does not share its degree sequence with any other graph.)

Theorem 1.3 can be paraphrased as follows.

Let n be an integer at least 3. If the degree sequence of a graph
G with n vertices is not majorized by the degree sequence of any
Kk ∨ (Kk +Kn−2k) with 1 ≤ k < n/2, then G is hamiltonian.

Since Kk ∨ (Kk +Kn−2k) has
k vertices of degree k,

n− 2k vertices of degree n− k − 1,
k vertices of degree n− 1,

the condition that the degree sequence of G is not majorized by the degree
sequence of any such graph with 1 ≤ k < n/2 can be stated more directly:

Theorem 1.4 (another form of Theorem 1.3). Let n be an integer at least 3. If
G is a graph with n vertices that, for each positive integer k less than n/2, has
fewer than k vertices of degree at most k or fewer than n− k vertices of degree
at most n− k − 1, then G is hamiltonian.

I proved Theorem 1.4 in January 1971 and submitted the resulting paper [5] for
publication on February 1.

Incidentally, this theorem describes a large set of forcibly hamiltonian sequences,
but it does not describe all of them. For example, Nash-Williams [13] proved
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that, for every choice of positive integers k and n such that k is less than n/2
and even, every sequence of k terms equal to k and n−k terms equal to n−k−1
is forcibly hamiltonian.

My proof of Theorem 1.4 was nonconstructive: it consisted of showing that for
every maximal nonhamiltonian graph G on n vertices there is a positive integer
k less than n/2 such that G has at least k vertices of degree at most k and at
least n− k vertices of degree at most n− k − 1.

Three years and a few months after this, Adrian Bondy visited me in Montreal
and complained about a student of his, who made no progress toward solving
an easy problem that Adrian had proposed. The problem was to convert my
proof into an efficient algorithm that, given a graph G satisfying the hypothesis
of Theorem 1.4, returns a Hamilton cycle in G. I commiserated with Adrian
but, as we talked about it, it began to dawn on us that the student may have
not been all that weak and that the problem may have not been all that easy:
we ourselves could not do it. Fortunately, this sorry state of affairs did not last
long. Eventually we designed the algorithm that Adrian wanted and then we
wrote it up, along with a plethora of generalizations, in [3].

1.1 An algorithmic proof of Theorem 1.4

Our starting point (which I had also used in my proof of Theorem 1.4) was a
proof of the following theorem by Øystein Ore (1899–1968):

Theorem 1.5 (Ore [14]). Let G be a graph of order n and let u, v be distinct
nonadjacent vertices of G such that G with edge uv added is hamiltonian. If
dG(u) + dG(v) ≥ n, then G is hamiltonian.

Proof. By assumption, G with edge uv added contains a cycle u1u2. . .unu1. If
none of its n edges is uv, then this cycle is a Hamilton cycle of G and we are
done; else we may assume, without loss of generality, that uv = unu1. Write

S = {i : u1 is adjacent to ui+1},
T = {i : un is adjacent to ui}

and note that S and T are subsets of {1, 2, . . . , n − 1}. If dG(u) + dG(v) ≥ n,
then, since |S| = dG(u1) and |T | = dG(un), we have S ∩T 6= ∅. With i standing
for any subscript in S ∩ T 6= ∅,

u1ui+1ui+2 . . . un, uiui−1u1

is a Hamilton cycle in G.

Now imagine looking for a Hamilton cycle in a prescribed graph G. If the
hypothesis of Theorem 1.5 is satisfied, then we may look instead for a Hamilton
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cycle in the graph H arising from G by adding edge uv: the proof of the theorem
shows how a Hamilton cycle using this edge can be transformed into a Hamilton
cycle not using it. Furthermore, if the new graph H and some other pair of
distinct nonadjacent vertices x, y satisfy dH(x) + dH(y) ≥ n, then we may in
turn augment H by adding edge xy. Repeating this process as long as we can, we
eventually arrive at a graph which we call the closure of G. (Here, the definite
article is apt: it is easy to prove that the closure is unique, independent of the
order in which new edges are added to the input graph. However, the argument
is irrelevant to the discussion that follows and we will not let it distract us.) To
be able to reverse the construction later on, we record with each new edge the
time when it gets added to the emerging closure.

H = G, timestamp(e) = 0 for all edges e of G, maxtimestamp = 0;
while H has distinct nonadjacent vertices u, v

such that dH(u) + dH(v) ≥ n
do add edge uv to H, timestamp(uv) = maxtimestamp +1,

maxtimestamp = timestamp(uv);
end

Next, we propose to prove that, as long as the hypothesis of Theorem 1.4 is
satisfied, the closure H of G is a complete graph: assuming that H is not
complete, we will produce a positive integer k less than n/2 such that

(i) 0 < k < n/2,
(ii) at least k vertices w of H have dH(w) ≤ k,
(iii) at least n− k vertices w of H have dH(w) ≤ n− k − 1.

Since dG(w) ≤ dH(w) for all w, properties (i), (ii), (iii) imply that the hypothesis
of Theorem 1.4 is not satisfied.

In producing k, we may assume that H has no isolated vertices: else (i), (ii),
(iii) are satisfied by setting k = 1. Under this assumption, let v denote a
vertex maximizing dH(w) among all w such that dH(w) ≤ n− 2 (there are such
vertices since H 6= Kn) and let u denote a vertex maximizing dH(w) among all
w nonadjacent to v in H. We are going to show that (i), (ii), (iii) are satisfied
by setting k = dH(u).

Since u is not an isolated vertex, we have dH(u) > 0. The stopping condition of
the while loop in the construction of H guarantees that dH(u) +dH(v) ≤ n− 1
and our choice of v guarantees that dH(v) ≥ dH(u); it follows that dH(u) < n/2.
Now (i) is verified. Vertex v is nonadjacent to n− 1−dH(v) vertices other than
itself; our choice of u guarantees that each of these vertices has degree at most
dH(u); since dH(v) ≤ n − 1 − dH(u), their number is at least dH(u). Now (ii)
is verified. Vertex u is nonadjacent to n− 1− dH(u) vertices other than itself;
our choice of v guarantees that each of these vertices has degree at most dH(v),
which is at most n − 1 − dH(u); in addition to these n − 1 − dH(u) vertices, u
also has degree at most n− 1− dH(u). Now (iii) is verified.
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Finally, any Hamilton cycle C in the closure of G can be transformed into a
Hamilton cycle C in G by iterating the argument that proves Theorem 1.5:

uv = edge of C that maximizes timestamp(uv);
while timestamp(uv) > 0
do list the vertices of C in their cyclic order as

u1, u2, . . . , un, u1 with uv = u1un;
find a subscript i such that

timestamp(u1ui+1) < timestamp(uv) and
timestamp(unui) < timestamp(uv);

C = the Hamilton cycle u1ui+1ui+2 . . . un, uiui−1u1;
uv = edge of C that maximizes timestamp(uv);

end

With each iteration of the while loop, the largest timestamp(e) with e running
through all the edges of C drops, and so the loop eventually terminates.

1.2 A digression: Testing the hypothesis of Theorem 1.2

It is obvious how to test the hypothesis of Theorem 1.4, but it it is not obvious
how to test the hypothesis of Theorem 1.2. With kmin(d1, . . . , dn) standing
for the smallest k such that some complete k-partite graph H with vertices
v1, . . . , vn has dH(vi) ≥ di for all i, the hypothesis of Theorem 1.2 can be stated
as

r − 1 < kmin(d1, . . . , dn).

Owen Murphy [12] designed an efficient algorithm that, given an integer se-
quence d1, d2,. . . ,dn such that 0 ≤ d1 ≤ . . . ≤ dn, returns the smallest k such
that some graph G with vertices v1, . . . , vn (i) consists of k pairwise vertex-
disjoint cliques and (ii) has dG(vi) ≤ di for all i. Since G has property (i) if and
only if its complement is complete k-partite, we have

k = kmin(n− 1− dn, . . . , n− 1− d1),

and so converting Murphy’s algorithm into an algorithm for computing rmin(d1, . . . , dn)
is a matter of mechanical routine.

Let us begin our discussion of the converted version with the following lemma:

Lemma 1.1. For every integer sequence d1, . . . , dn such that d1 ≤ . . . ≤ dn ≤
n− 1 there is a complete k-partite graph H with vertices v1, . . . , vn such that

(i) k = kmin(d1, . . . , dn),
(ii) dH(vi) ≥ di for all i = 1, . . . , n,

(iii) one of the k parts of H is {va+1, va+2, . . . , vn}, where a = dn.

Proof. Consider an arbitrary graph H with properties (i), (ii) and let S denote
the part of H that includes vn. Since dH(vn) = n−|S|, we have |S| ≤ n−dn. If
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|S| < n−dn, then transfer any n−dn−|S| vertices from the outside of S into S.
This transformation maintains property (ii): after the move, all the vertices in
S have degree dn and the degrees of all the other vertices remain unchanged or
increase during the move. Since the transformation maintains property (ii) and
does not increase the number of parts of H, it maintains property (i) as well.
Now |S| = n−dn. Finally, if there are subscripts i and j such that 1 ≤ i < j ≤ n
and vi ∈ S, vj 6∈ S, then dH(vi) = dn ≥ dj , dH(vj) ≥ dj ≥ di, and so swapping
the labels of these two vertices maintains property (ii); trivially, it maintains
property (i) as well. Repeating this operation until no such pair vi, vj is present
any more produces an H with all three properties (i), (ii), (iii).

Lemma 1.1 points out the following recursive algorithm that, given any integer
sequence d1, d2, . . . , dn such that d1 ≤ . . . dn ≤ n− 1, returns kmin(d1, . . . , dn).

if dn ≤ 0
then return 1;
else s = n− dn;

return 1 + kmin(d1 − s, . . . , dn−s − s);
end

Here is the same algorithm presented in an iterative form (chosen to resemble
the iterative algorithm on page 209 of [12]):

n0 = n, k = 0;
while nk > 0
do t = n− nk ;

nk+1 = dn−t − t;
k = k + 1;

end
return k;

For instance, given the sequence 1, 1, 1, 2, 3, 3, 5, the algorithm proceeds as fol-
lows:

recursive form iterative form
kmin(1, 1, 1, 2, 3, 3, 5) [s = 2] n0 = 7, k = 0

= 1 + kmin(−1,−1,−1, 0, 1) [s = 4] t = 0, n1 = 5, k = 1
= 2 + kmin(−5) t = 2, n2 = 1, k = 2
= 3 t = 6, n3 = −5, k = 3
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2 A theorem that involves connectivity and sta-
bility

As we have observed, the graphs Kk ∨ (Kk + Kn−2k) with 1 ≤ k < n/2 that
are featured in Theorem 1.3 are nonhamiltonian for a simple reason: each of
them contains a nonempty set A of vertices, whose removal breaks the rest
of the graph into more than |A| connected components. Let us say that a
graph is tough if it does not contain any such set A. In this terminology, every
hamiltonian graph is tough, but the converse is false: for instance, the graph
with vertices u1, u2, u3, v1, v2, v3, w and edges

u1u2, u1u3, u2u3, u1v1, u2v2, u3v3, u1w, u2w, u3w, v1w, v2w, v3w

is tough but nonhamiltonian. (In [6], I conjectured that a weaker version of the
converse might be true, though: I proposed to call a graph t-tough, with t a
positive number, if it contains no nonempty set A of vertices, whose removal
breaks the rest of the graph into more than t|A| connected components and I
conjectured the existence of a positive number t0 such that every t0-tough graph
is hamiltonian. This conjecture remains open; Doug Bauer, Hajo Broersma, and
Hendrik Veldman [1] proved that every such t0 is at least 9/4. For more on the
conjecture, see [11].)

Having proved Theorem 1.3, I was drawn to musings on which graphs are tough
and which graphs are not. Maximal non-tough graphs are easily described: each
of them is the join of a complete graph with some positive number k of vertices
and a graph that is the disjoint union of k+1 nonempty complete graphs. (These
graphs include not only all the graphs featured in Theorem 1.3, but other graphs
as well. For instance, K1∨(K2+K2) is a maximal non-tough graph, which does
not appear in Theorem 1.3, since its degree sequence is stricly majorized by the
degree sequence of another maximal non-tough graph, K2 ∨ (K1 + K1 + K1).)
The shape of these graphs suggests a relationship between toughness and two
classic invariants of graphs: the stability number α(G), defined as the largest
number of pairwise disjoint vertices in G, and the connectivity κ(G), defined as
the smallest number of vertices whose removal breaks the rest of G into at least
two connected components. (In particular, κ(G) = 0 means that G is discon-
nected. Note also that this definition does not specify connectivity of complete
graphs; that is declared as κ(Kn) = n − 1.) More precisely, if G is not tough,
then α(G) > κ(G): when the removal of a nonempty set A of vertices breaks the
rest of the graph into more than |A| connected components, we have κ(G) ≤ |A|
and (as vertices in different components of G with A removed are nonadjacent)
α(G) > |A|. So now I had two different conditions implying that a graph G is
tough: one was that G is hamiltonian and the other was that α(G) ≤ κ(G).
But I could not find any graph that would satisfy the latter condition without
satisfying the former.
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In the spring of 1971, I traveled through the West Coast of Canada and United
States: I had hiring interviews in Victoria and at Stanford, I gave talks at the
University of Washington in Seattle and at University of California at Los Angeles,
I went to San Francisco just to see it and I visited the RAND Corporation in
Santa Monica. All this time, I kept switching back and forth between two distinct
modes of operation: when a university paid for a particular leg of the trip, I flew
on airplanes and slept in three-star hotels; when I was on my own, I hitchhiked
and stayed at the YMCA. I incorporated into this tour a number theory conference
held in March at the Washington State University since Paul Erdős was among its
participants.

When the conference ended, Richard Guy (1916–2020) and his wife Louise
(1918–2010) were about to drive the PGOM to Calgary and offered to take me
with them as far as I wanted to go. Just before we got into the car, I mentioned
to Erdős my suspicion that the condition α(G) ≤ κ(G) implied that G was
hamiltonian. This stratagem earned me a place beside him in the back seat and
his undivided attention for the duration of my ride with them. In just under two
hours, we arrived in Spokane and by that time Erdős had explained to me a proof
that my suspicion was justified. Then they dropped me off and my luck continued:
within minutes I hitched a ride with a genial truck driver, who took me on the
I-90 all the way to Seattle.

When I wrote it up, I added a footnote that read

This note was written in Professor Richard K. Guy’s car on the
way from Pullman to Spokane, Wash. The authors wish to express
their gratitude to Mrs. Guy for smooth driving.

Erdős liked the footnote and I was glad.

Theorem 2.1 ([7]). If G is a graph with at least 3 vertices such that α(G) ≤
κ(G), then G is hamiltonian.

Proof. A vertex cut is a set of vertices whose removal leaves the rest of the graph
disconnected. We will specify an efficient algorithm that, given any graph G
with at least 3 vertices, returns either a vertex cut K and a stable set A such
that |A| > |K| (which certifies that the hypothesis of the theorem is false) or
else a Hamilton cycle in G (which certifies that the conclusion of the theorem
is true).

In its simple preliminary phase, the algorithm produces either a vertex cut {w}
and a stable set {u, v} (in which case it terminates) or else a cycle in G (in
which case it proceeds to the subsequent main phase). The former outcome
occurs when some vertex u has degree at most 1: vertex v is an arbitrary vertex
nonadjacent to u and vertex w is either the unique neighbour of u or, if u is
an isolated vertex, any vertex other than u. The latter outcome occurs when
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every vertex of G has degree at least 2. In this case, we build iteratively longer
and longer paths u1u2u3 . . . starting from an arbitrary vertex u2 and its distinct
neighbours u1, u3. Once a path u1u2 . . . uk has been built, consider a neighbour
v of uk other than uk−1. If v = ui for some i such that 1 ≤ i ≤ k − 2, then the
preliminary phase terminates with cycle uiui+1 . . . ukui; else we set uk+1 = v
and proceed to the next iteration.

The main phase of the algorithm is also iterative. Each of its iterations begins
with a cycle in G (in particular, the first iteration begins with the cycle produced
in the preliminary phase). Let C denote this cycle.

Case 1: C is not a Hamilton cycle.
In this case, choose one of the two cyclic orientations of C and for each vertex
v of C let v++ denote the immediate successor of v in this orientation. Let
Q denote an arbitrary connected component of the graph arising from G by
removing all vertices of C (and all edges incident with these vertices). Set

X ={v : v has a neighbour in Q},
Y ={v : v++ ∈ X}.

Subcase 1.1: X ∩ Y = ∅ and Y is a stable set.
In this subcase, return the vertex cut X and the stable set Y ∪ {u} with u an
arbitrary vertex in Q.

Subcase 1.2: There is a vertex v such that v ∈ X and v++∈ X.
In this subcase, v and v++ are joined by a path of length at least two that has
all interior vertices in Q. Replace edge vv++ of C by this path and proceed to
the next iteration with the longer cycle.

Subcase 1.3: There is an edge v++w++ such that v, w ∈ X and w 6= v++.
In this subcase, replace edges vv++ and ww++ of C by edge v++w++ and a path
between v to w with all interior vertices in Q; proceed to the next iteration with
the longer cycle.

Case 2: C is a Hamilton cycle.
Return C.

Which graphs satisfy the hypothesis of Theorem 2.1?

Proposition 2.1. With m?(n) standing for the smallest number of edges in a
graph G with n vertices such that α(G) ≤ κ(G), we have

1

2
n3/2− 1

4
n < m?(n) ≤ 1

2
n3/2+

5

2
n .

Proof. First, we will prove that every graph G with n vertices and m edges
which is not complete has

α(G) ≥ n2/(2m+ n), (1)

κ(G) ≤ 2m/n. (2)
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To prove (1), we appeal to the bound

ex(Kr, n) ≤
(

1− 1

r − 1

)
n2

2
(3)

which follows from formula

ex(Kr, n) =

(
1− 1

r − 1

)
n2

2
− b(r − 1− b)

2(r − 1)
where b = n mod (r − 1).

If r is an integer such that r ≥ 2 and if number of edges of the complement G
of G (which equals

(
n
2

)
−m) exceeds the right-hand side of (3), then G contains

the complete graph Kr with r vertices. This fact may be recorded as(
n

2

)
−m >

(
1− 1

r − 1

)
n2

2
⇒ α(G) ≥ r

or, after simplifications, as

r − 1 < n2/(2m+ n) ⇒ α(G) ≥ r,

which is logically equivalent to (1). To prove (2), let v denote a vertex of G that
has the smallest degree. Since G is not complete, some vertex w is nonadjacent
to v and distinct from it, and so the set K of all the neighbours of v is a vertex
cut separating v from w. Since the average degree of a vertex in G is 2m/n, we
have |K| ≤ 2m/n.

Under the assumption that α(G) ≤ κ(G), bounds (1) and (2) imply that

4m2 + 2mn ≥ n3;

since the left-hand side of this inequality is an increasing function of m and its
value at 1

2n
3/2 − 1

4n equals n3 − 1
4n

2, the lower bound on m?(n) follows.

To establish the upper bound on m?(n), we will construct, for an arbitrary
positive integer n, a graph G with n vertices and at most 1

2n
3/2+5

2n edges such

that α(G) ≤ κ(G). For this purpose, set t = bn1/2c. For the vertex set of G, we
take the union of t pairwise disjoint sets V1, V2, . . . , Vt whose sizes differ from
each other by at most 1: each |Vi| is bn/tc or dn/te. Since t ≤ n1/2, we have
n/t ≥ t, and so in each Vi we can choose pairwise distinct vertices v1i , v

2
i , . . . v

t
i .

For each choice of i and j such that 1 ≤ i ≤ t− 1 and 1 ≤ j ≤ t, we join vertex
vji to vertex vji+1 by an edge; for each i such that 1 ≤ i ≤ t, we join every two
vertices in Vi by an edge; apart from these, G has no other edges.

Since n < (t+1)2, we have n/t ≤ t+2, and so each |Vi| is at most t+2, and so the
number m of edges of G satisfies m ≤ t(t−1)+t

(
t+2
2

)
= 1

2 t
3+ 5

2 t
2 ≤ 1

2n
3/2+ 5

2n.
Since the vertex set of G is covered by the t cliques Vi, we have α(G) ≤ t. To
see that κ(G) ≥ t, observe that no set K of t− 1 vertices of G can be a vertex
cut: since the t paths vj1v

j
2 . . . v

j
t with j = 1, 2, . . . , t are pairwise vertex-disjoint,

12



K cannot meet all of them. It follows that the graph G − K arising from G
by the deletion of all vertices in K (and all edges incident with these vertices)
is connected: it contains at least one of the paths vj1v

j
2 . . . v

j
t and, for each

i = 1, 2, . . . , t, all of its vertices in Vi are adjacent to vji .

Proposition 2.1 shows that the hypothesis of Theorem 2.1 can be satisfied by
relatively sparse graphs. Graphs that satisfy the hypothesis of Theorem 1.4, by
contrast, must be dense:

Proposition 2.2. Let n be an integer at least 3. If G is a graph with n vertices
that, for each positive integer k less than n/2, has fewer than k vertices of degree
at most k or fewer than n− k vertices of degree at most n− k − 1, then G has
at least n2/8 edges.

Proof. Arrange the degree sequence d1, d2, . . . , dn of G in non-decreasing order
and set k = dn/2e − 1. If dk ≥ k + 1, then dn−k ≥ k + 1 as d1 ≤ d2 ≤ . . . ≤ dn.
If dk ≤ k, then the sequence has at least k terms not exceeding k, and so it
must have fewer than n − k terms not exceeding n − k − 1, which means that
dn−k ≥ n− k. Since n− k ≥ k + 1 by definition, we conclude that∑n

i=1 di ≥
∑n

i=n−k di ≥ (k + 1)dn−k ≥ (k + 1)2 ≥ n2/4.

The lower bound in this proposition can be raised to (3n2− 2n− 8)/16 by more
careful analysis [8, page 96]. (In the same article, its authors also prove that a
graph with n vertices has complete closure only if it has at least b(n + 2)2/8c
edges and that this bound cannot be improved.)
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