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EXTREMAL SET THEORY

1 Sperner’s theorem

The Erdős-Rado investigations of ∆-systems constitute a part of extremal set
theory , which concerns extremal sizes of set families with prescribed properties
(such as including only k-point sets and containing no ∆-system of more than
m sets). A classic of this theory comes from Emanuel Sperner (1905 – 1980):

Theorem 1.1 (Sperner [49]). Let n be a positive integer. If V is an n-point set
and E is a family of subsets of V such that

S, T ∈ E , S 6= T ⇒ S 6⊆ T, (1)

then

|E| ≤
(

n

bn/2c

)
. (2)

Furthermore, (2) holds as equality if and only if E consists of all subsets of V
that have size bn/2c or all subsets of V that have size dn/2e.

A family E of sets with property (1) is called an antichain.

The original proof of Theorem 1.1 involves an intermediate result of independent
interest:

Lemma 1.1. Let n and k be integers such that 1 < k < n; let V be an n-point
set, let F be a nonempty family of k-point subsets of V , and let F (+), F (−) be
defined by

F (+) = {T ⊆ V : |T | = k + 1 and S ⊂ T for some S in F},
F (−) = {R ⊆ V : |R| = k − 1 and R ⊂ S for some S in F}.

Then

(i) if k < (n− 1)/2, then |F (+)| > |F|,
(ii) if k = (n− 1)/2 and |F| <

(
n
k

)
, then |F (+)| > |F|,

(iii) if k > (n+ 1)/2, then |F (−)| > |F|,
(iv) if k = (n+ 1)/2 and |F| <

(
n
k

)
, then |F (−)| > |F|.

Proof. Let N denote the number of all pairs (S, T ) such that S ∈ F , S ⊂ T ⊆ V ,
and |T | = k + 1. Each T in F (+) appears in at most k + 1 such pairs, and so
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N ≤ |F (+)| · (k + 1); each S in F appears in precisely n− k such pairs, and so
N = |F| · (n− k); we conclude that

|F (+)|
|F|

≥ N

(k + 1)|F|
≥ n− k

k + 1
. (3)

Proof of (i): Under the assumption k < (n− 1)/2, we have (n− k)/(k + 1) > 1
and the conclusion follows from (3).

Proof of (ii): Here, (3) is transformed into

|F (+)|
|F|

>
N

(k + 1)|F|
= 1 :

the assumption k = (n − 1)/2 means that (n − k)/(k + 1) = 1 and under the
assumption |F| <

(
n
k

)
, we will prove that N < |F (+)| · (k + 1). To do this, we

will find a T in F (+) with at least one k-point subset outside F . Since |F| > 0,
there is a k-point subset S of V such that S ∈ F ; since |F| <

(
n
k

)
, there is a

k-point subset S′ of V such that S′ 6∈ F ; replacing points in S − S′ by points
in S′ − S one by one, we construct a sequence S0, S1, . . . , St of k-point subsets
Si of V such that S0 = S, St = S′, and |Si−1 ∩ Si| = k− 1 for all i = 1, 2, . . . , t.
If i is the smallest subscript such that Si 6∈ F , then Si−1 ∈ F and we can take
T = Si ∪ Si−1.

Proofs of (iii) and (iv): In (i) and (ii), replace F by {V − S : S ∈ F}.

Proof of Theorem 1.1. Let n be a positive integer, let V be an n-point set, and
let E be any largest antichain of subsets of V ; write

kmin = min{|S| : S ∈ E}, kmax = max{|S| : S ∈ E}
and

Emin = {S ∈ E : |S| = kmin}, Emax = {S ∈ E : |S| = kmax}.
Since E is an antichain, E(+)

min is disjoint from E and (E − Emin) ∪ E(+)
min is an

antichain; since E is a largest antichain of subsets of V , it follows that |E(+)
min| ≤

|Emin|; now part (i) of Lemma 1.1 guarantees that
(i) kmin ≥ (n− 1)/2

and part (ii) of Lemma 1.1 guarantees that
(ii) if kmin = (n− 1)/2, then |Emin| =

(
n

(n−1)/2
)
.

Similar arguments show that
(iii) kmax ≤ (n+ 1)/2

and that
(iv) if kmax = (n+ 1)/2, then |Emax| =

(
n

(n+1)/2

)
.

The conclusion of the theorem follows from (i), (ii), (iii), (iv). �
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1.1 A simple proof of Sperner’s theorem

Independently of each other, Koichi Yamamoto [55], Lev Dmitrievich Meshalkin
(1934–2000) [38], and David Lubell [37] found the following inequality:

Theorem 1.2 (The LYM inequality). If E is an antichain of subsets of an
n-point set, then ∑

S∈E

1(
n
|S|
) ≤ 1. (4)

Proof. Let V be an arbitrary but fixed n-point set and let E be an arbitrary
but fixed antichain of subsets of V . A chain of length n + 1 is any family
S0, S1, . . . , Sn of subsets of V such that |Si| = i for all i and S0 ⊂ S1 ⊂ . . . ⊂ Sn
(in particular, S0 = ∅ and Sn = V ). We will count in two different ways the
number N of all pairs (C, S) such that C is a chain of length n+1 and S ∈ E ∩C.

For each k-point subset S of V , there are precisely k! choices of a sequence S0,
S1,. . . , Sk of subsets of V such that |Si| = i for all i and S0 ⊂ S1 ⊂ . . . ⊂ Sk = S;
there are precisely (n− k)! choices of a sequence Sk, Sk+1, . . . , Sn of subsets of
V such that |Si| = i for all i and S = Sk ⊂ Sk+1 ⊂ . . . ⊂ Sn; it follows that each
member S of our E participates in precisely |S|!(n − |S|)! of our pairs (C, S),
and so

N =
∑
S∈E

|S|!(n− |S|)! .

Since each chain contains at most one member of any antichain, each C partici-
pates in at most one of our pairs (C, S), and so N is at most the number of all
chains of length n+ 1:

N ≤ n! .

Comparing the exact formula for N with this upper bound, we get the inequality∑
S∈E

|S|!(n− |S|)! ≤ n! ,

which is just another way of writing (4).

Let us prove Theorem 1.1 along the lines of Theorem 1.2. The first part of
Theorem 1.1 — inequality (2) — is a direct consequence of Theorem 1.2: every
antichain E of subsets of an n-point set satisfies

|E| =
∑
S∈E

1 ≤
∑
S∈E

(
n
bn/2c

)(
n
|S|
) =

(
n

bn/2c

)∑
S∈E

1(
n
|S|
) ≤ (

n

bn/2c

)
. (5)

To prove the second part of Theorem 1.1 — characterization of extremal an-
tichains — along these lines, consider an arbitrary antichain E of subsets of an
n-point set V that satisfies both inequalities in (5) with the sign of equality.
The first of these equations implies that

(
n
|S|
)

=
(

n
bn/2c

)
for all S in E , which
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means that |S| = n/2 when n is even and |S| = (n ± 1)/2 when n is odd. If
n is even, then we are done; if n is odd, then we will argue about the second
inequality-turned-equation in (5). This equality means equality in (4); review-
ing the proof of Theorem 1.2, we find that
• every chain of length n+ 1 contains a member of E ,
and so (since all sets in E have size (n± 1)/2)
• for every two subsets S, T of V such that |S| = (n − 1)/2, |T | = (n + 1)/2,
and S ⊂ T , precisely one of S and T belongs to E .
It follows at once that
• |S| = |S′| = (n− 1)/2, S ∈ E , S′ ⊂ V , |S ∪ S′| = (n+ 1)/2 ⇒ S′ ∈ E
(consider T = S ∪ S′) and then induction on |S ∪ S′| shows that
• |S| = |S′| = (n− 1)/2, S ∈ E , S′ ⊂ V ⇒ S′ ∈ E .

2 The Erdős-Ko-Rado theorem

In 1938, Paul Erdős, Chao Ko, whose name is also transliterated as Ke Zhao
(1910–2002), and Richard Rado proved a theorem that they published twenty-
three years later [19, Theorem 1]. Its simplified version presented below is known
as the Erdős-Ko-Rado theorem.

Theorem 2.1. Let n and k be positive integers such that 2k ≤ n. If V is an
n-point set and E is a family of k-point subsets of V such that

S, T ∈ E ⇒ S ∩ T 6= ∅, (6)

then

|E| ≤
(
n− 1

k − 1

)
. (7)

A family E of sets with property (6) is called an intersecting family.

The original proof of Theorem 2.1 involves an intermediate result of independent
interest:

Lemma 2.1. Let V be a set and let E be an intersecting family of subsets of V.
Given two elements x, y of V , write

E∗ = {S ∈ E : x ∈ S, y 6∈ S, (S − {x}) ∪ {y} 6∈ E}

and define f : E → 2V by

f(S) =

{
(S − {x}) ∪ {y} if S ∈ E∗,
S otherwise.

Then {f(S) : S ∈ E} is an intersecting family of size |E|.
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Proof. We will verify that S, T ∈ E ⇒ f(S) ∩ f(T ) 6= ∅ and that S 6= T ⇒
f(S) 6= f(T ).

Case 1: S, T ∈ E − E∗. In this case, f(S) = S, f(T ) = T , and so both
implications hold trivially.

Case 2: S, T ∈ E∗. In this case, we have f(S)∩f(T ) 6= ∅ since y ∈ f(S)∩f(T ).
In addition, S = (f(S) − {y}) ∪ {x}, T = (f(T ) − {y}) ∪ {x}, and so f(S) =
f(T )⇒ S = T .

Case 3: S ∈ E∗, T ∈ E − E∗. In this case, f(S) = (S − {x}) ∪ {y} 6∈ E and
f(T ) = T ; in particular, f(S) 6= f(T ) since f(S) 6∈ E and f(T ) ∈ E . It remains
to prove that f(S)∩ f(T ) 6= ∅. If y ∈ T , then y ∈ f(S)∩ f(T ) and we are done;
now we may assume that

y 6∈ T,

and so f(S) ∩ f(T ) = (S − {x}) ∩ T . If x 6∈ T , then f(S) ∩ f(T ) = S ∩ T and
we are done again; now we may assume that

x ∈ T.

Since S ∈ E∗, we have
x ∈ S and y 6∈ S.

Now

f(S) ∩ f(T ) = (S − {x}) ∩ T = S ∩ (T − {x}) = S ∩ ((T − {x}) ∪ {y})

Since x ∈ T , y 6∈ T , and T ∈ E − E∗, we must have (T − {x}) ∪ {y} ∈ E ; since
E is an intersecting family, we conclude that

f(S) ∩ f(T ) = S ∩ ((T − {x}) ∪ {y}) 6= ∅.

Proof of Theorem 2.1. Let n and k be positive integers such that 2k ≤ n and
let E be any intersecting family of k-point subsets of {1, 2, . . . , n}. We will use
induction on n to show that |E| ≤

(
n−1
k−1
)
. The induction basis, n = 2, is trivial;

in the induction step, we assume that n ≥ 3.

If k = 1, then we are done at once: E , being an intersecting family of one-
point sets, cannot contain two sets. If 2k = n, then we are done again: in this
case, E includes at most one set from each pair (S, {1, 2, . . . , 2k} − S), and so
|E| ≤ 1

2

(
2k
k

)
=
(
2k−1
k−1

)
. Now we may assume that

k ≥ 2 and 2k ≤ n− 1.

Let us define the weight w(F) of a family F of subsets of {1, 2, . . . , n} as∑
S∈F

∑
x∈S x. We may assume that among all intersecting families F of k-

point subsets of {1, 2, . . . , n} such that |F| = |E|, family E has the smallest
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weight. This assumption guarantees that

for every two points x, y in {1, 2, . . . , n} such that x > y, we have

S ∈ E , x ∈ S, y 6∈ S ⇒ (S − {x}) ∪ {y} ∈ E :
(8)

since Lemma 2.1 transforms E into an intersecting family of k-point subsets of
{1, 2, . . . , n} that has size |E| and weight w(E) − |E∗| · (x − y), minimality of
w(E) implies E∗ = ∅.

Finally, let us set

Ek = {S ∈ E : n 6∈ S} and Ek−1 = {S − {n} : S ∈ E , n ∈ S}

We will complete the proof by showing that Ek−1 is an intersecting family: this
assertion and the induction hypothesis imply that

|E| = |Ek|+ |Ek−1| ≤
(
n−2
k−1
)

+
(
n−2
k−2
)

=
(
n−1
k−1
)
.

To show that Ek−1 is an intersecting family, consider arbitrary sets A,B in Ek−1
and take any point y in {1, 2, . . . , n− 1} − (A ∪B). By definition, A ∪ {n} and
B ∪ {n} belong to E ; in turn, (8) with x = n and S = B ∪ {n} guarantees that
B ∪ {y} belongs to E ; since E is an intersecting family, we conclude that

A ∩B = (A ∪ {n}) ∩ (B ∪ {y}) 6= ∅.

�

2.1 A simple proof of the Erdős - Ko - Rado theorem

Gyula Katona [28] found a proof of Theorem 2.1 that imitates the proof of
Theorem 1.2. We are going to paraphrase a variation on Katona’s theme that
comes from Chris Godsil and Gordon Royle [25]. Here, the key notion is a
certain family of n sets of size k which we call an (n, k)-ring. This family is
defined by a cyclic order on its underlying set V : each member of the resulting
ring consists of k points of V that are consecutive in the cyclic order. To put it
a little more formally, when v1, v2, . . . , vn is the cyclic order of the elements of
V , the members S1, S2, . . . , Sn of the ring are defined as

Si = {vi, vi+1, . . . , vi+k−1} (9)

with subscript arithmetic modulo n (so that vn+1 = v1, vn+2 = v2, and so on).

Lemma 2.2. If n and k are positive integers such that 2k ≤ n, then every
intersecting subfamily of an (n, k)-ring consists of at most k sets.

Proof. Let n and k be positive integers such that 2k ≤ n and let F be intersect-
ing subfamily of an (n, k)-ring; let S1, S2, . . . , Sn be the members of the ring as
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in (9). If F = ∅, then there is nothing to prove; else F includes at least one
member of the ring and symmetry allows us to assume that F includes Sk. Since
every Si in F has Si ∩ Sk 6= ∅, its subscript i must be one of 1, 2, . . . , 2k − 1;
since the two sets in each of the k − 1 pairs

(S1, Sk+1), (S2, Sk+2), . . . , (Sk−1, S2k−1)

are disjoint, F includes at most one of these two sets, and so it includes at most
k of the n sets Si.

Alternative proof of Theorem 2.1. Given any positive integers n and k such
that 2k ≤ n and given an arbitrary but fixed n-point set V, let M denote the
number of (n, k)-rings R on V and, for each k-point subset S of V, let d(S)
denote the number of (n, k)-rings R on V such that S ∈ R. By symmetry,
d(S) is a constant d dependent on n and k but independent of the choice of S;
counting in two different ways the pairs (R, S) such that R is an (n, k)-ring on
V and S ∈ R, we find that

Mn =
(
n
k

)
d. (10)

Next, given an arbitrary but fixed intersecting family E of k-point subsets of V ,
we will count in two different ways the number N of all pairs (R, S) such that
R on V is an (n, k)-ring and S ∈ E ∩R: since each S in E is featured in d such
pairs and, by Lemma 2.2, each R is featured in at most k such pairs, we have

|E|d = N ≤Mk. (11)

Together, (11) and (10) imply that |E| ≤ M
d k = k

n

(
n
k

)
=
(
n−1
k−1
)
. �

2.2 Extremal families in the Erdős - Ko - Rado theorem

A family E of sets such that some point belongs to all members of E is called a
star .

Theorem 2.2 (Theorem 7.8.1 in [25]). Let n and k be positive integers such
that 2k < n. If V is an n-point set and E is an intersecting family of k-point
subsets of V such that

|E| =
(
n− 1

k − 1

)
,

then E is a star.

The assumption 2k < n of Theorem 2.2 cannot be relaxed to the 2k ≤ n of
Theorem 2.1: for example, the family of all k-point subsets of {1, 2, . . . , 2k− 1}
is intersecting, consists of

(
2k−1
k−1

)
sets, and is not a star.

The remainder of the present section is devoted to a proof of Theorem 2.2.

The folowing lemma is to Lemma 2.2 what Theorem 2.2 is to Theorem 2.1:
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Lemma 2.3 (Lemma 7.7.1 in [25]). If n and k are positive integers such that
2k < n, then every intersecting subfamily of an (n, k)-ring that consists of k
sets is a star.

Proof. Let F and S1, S2, . . . , Sn be as in the proof of Lemma 2.2; in particular,
F ⊂ {S1, S2, . . . , S2k−1} and Sk ∈ F . Assumption |F| = k implies that

(i) F includes precisely one of the two sets Si, Sk+i
in each of the k − 1 pairs (S1, Sk+1), (S2, Sk+2), . . . , (Sk−1, S2k−1)

since the two sets in each of these pairs are disjoint, and so at most one of them
can be included in F . In addition,

(ii) F includes at most one of the two sets Si, Sk+i+1

in each of the k − 2 pairs (S1, Sk+2), (S2, Sk+3), . . . , (Sk−2, S2k−1)

since the two sets in each of these pairs are disjoint.

If all k sets S1, S2, . . . , Sk belong to F , then F is a star (point vk belongs to all
its members) and we are done; now we may assume that there is at least one
subscript j such that 1 ≤ j ≤ k − 1 and Sj 6∈ F ; let j be the largest subscript
with these properties. Now Sj+1, Sj+2, . . . , Sk ∈ F ; by (i) and (ii), we have

Si 6∈ F ⇒ Sk+i ∈ F ⇒ Si−1 6∈ F ;

referring to these implications with i = j, j−1, . . . , 1, we find that Sk+j , Sk+j−1,
. . . , Sk+1 ∈ F . So F consists of the k sets Sj+1, Sj+2, . . . , Sj+k and that makes
it a star (point vj+k belongs to all its members).

Another ingredient of the proof of Theorem 2.2 is this:

Lemma 2.4. Let n and k be positive integers such that 2k < n, let V be an
n-point set, and let A,B,X be k-point subsets of V such that A,B intersect
in precisely one point and X does not include this point. Then there is an
(n, k)-ring R with the following properties:

(i) X ∈ R,
(ii) if F ⊂ R and F is a star of k sets

and every member of F intersects both A and B, then X 6∈ F .

Proof. Let w denote the single point of A ∩ B and let us write A0 = A− {w},
B0 = B − {w}; let us enumerate

the elements of A0 −X followed by
the elements of X ∩A0 followed by
the elements of X − (A0 ∪B0) followed by
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the elements of X ∩B0 followed by
the elements of B0 −X

as v1, v2, . . . , vt. (Since w is missing from this sequence, we have t ≤ n − 1; if
X ⊆ A0 ∪B0, then t = 2(k− 1) ≤ n− 3.) Then let us enumerate the remaining
elements of V as vt+1, vt+2, . . . , vn in such a way that

w =

{
vn if X 6⊆ A0 ∪B0,

vn−1 if X ⊆ A0 ∪B0.

Finally, let R consist of the sets S1, S2, . . . , Sn defined by

Si = {vi, vi+1, . . . , vi+k−1}

with subscript arithmetic modulo n. By this definition, X ∈ R; to prove that
R has property (ii), note first that a subfamily of R is a star of k sets if and
only if it is one of F1,F2, . . . ,Fn defined by

Fi = {Si, Si+1, . . . , Si+k−1}

with subscript arithmetic modulo n. Proving (ii) means proving that

if an Fi includes X, then it includes a set disjoint from A or B (or both).

To prove this, we distinguish between two cases.

Case 1: X 6⊆ A ∪B. In this case, w = vn. To begin, note that
• if i is one of 1, . . . , k, then Sk, disjoint from A, is included in Fi;
• if i is one of k, . . . , n− k, then Si, included in Fi, is disjoint from A;
• if i is one of n− k + 2, . . . , n, then S1, disjoint from B, is included in Fi.
To summarize, if i 6= n− k + 1, then Fi includes a set disjoint from A or B (or
both); we will complete the analysis of this case by showing that X ∩A = ∅ or
else X 6∈ Fn−k+1. To do this, consider the subscript j such that X = Sj . If
X ∩A 6= ∅, then (as vn 6∈ X) we have 1 ≤ j ≤ k − 1, and so Sj 6∈ Fn−k+1.

Case 2: X ⊆ A ∪B. In this case, w = vn−1. To begin, note that
• if i is one of 1, . . . , k, then Sk, disjoint from A, is included in Fi;
• if i is one of k, . . . , n− k − 1, then Si, included in Fi, is disjoint from A;
• if i is one of n− k + 1, . . . , n, then Sn, disjoint from B, is included in Fi.
To summarize, if i 6= n−k, then Fi includes a set disjoint from A or B (or both);
we will complete the analysis of this case by showing that X ∩ A = ∅ or else
X 6∈ Fn−k. To do this, consider the subscript j such that X = Sj . If X∩A 6= ∅,
then (as vn−1 6∈ X) we have j = n or 1 ≤ j ≤ k − 1, and so Sj 6∈ Fn−k.

Proof of Theorem 2.2. Let n, k, V, E satisfy the assumptions of the theorem.
The argument used in the alternative proof of Theorem 2.1 shows that each
(n, k)-ring on V includes precisely k members of E (else we would have N < Mk
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in (11) and so |E| <
(
n−1
k−1
)
); this and Lemma 2.3 together imply that

(?) if R is an (n, k)-ring on V , then R∩ E is a star of k sets.
In particular, E includes distinct sets that intersect in precisely one point; let
A,B denote them and let w denote the single point of their intersection.

We will complete the proof of the theorem by showing that w belongs to all
members of E : given any k-point subset X of V such that w 6∈ X, we will prove
that X 6∈ E . To do this, we may assume that X ∩A 6= ∅ (else X 6∈ E follows at
once since E is an intersecting family and A ∈ E), and so there is an (n, k)-ring
R on V with properties (i) and (ii) of Lemma 2.4. Fact (?) guarantees that
R∩E is a star of k sets; since every member of R∩E intersects both A and B,
it follows from Lemma 2.4 that X ∈ R and X 6∈ R ∩ E . �

3 Turán numbers

A hypergraph is a set V along with a set E of subsets of V . Elements of V
are the vertices of the hypergraph and members of E are its hyperedges. If, for
some integer k, every hyperedge consists of k vertices, then the hypergraph is
said to be k-uniform.

Erdős’s close friend Paul Turán (1910 – 1976) asked [52] for the smallest number
of hyperedges in a k-uniform hypergraph on n vertices in which every set of `
vertices contains at least one hyperedge. Today, these numbers are called Turán
numbers and denoted T (n, `, k).

3.1 When k ≤ 3

All Turán numbers T (n, `, 2) have been computed by Turán [51]. When k ≥ 3,
Turán numbers T (n, `, k) are hard to compute. Turán conjectured that

T (n, 4, 3) =


(2s− 1)(s− 1)s if n = 3s,

(2s− 1)s2 if n = 3s+ 1,

(2s+ 1)s2 if n = 3s+ 2

and constructed hypergraphs showing that the left-hand side of this conjectured
equation is at most its right-hand side. As time progressed, larger and larger
families of such hypergraphs have been constructed by Alexandr Kostochka [34],
William Brown [5], and Dmitrii Germanovich Fon-Der-Flaass [22]. Abundance
of these examples seems to suggest that the conjecture is difficult. Gyula Ka-
tona, Tibor Nemetz, and Miklós Simonovits [29] verified it for n ≤ 10.

In the same paper [29], these three authors proved that

T (n, `, k)(
n
k

) ≥ T (n− 1, `, k)(
n−1
k

) whenever n > ` ≥ k. (12)
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To verify (12), consider a k-uniform hypergraph with n vertices and T (n, `, k)
hyperedges in which every set of ` vertices contains at least one hyperedge; let
N denote the number of pairs (H, v) such that H is a hyperedge and v is a
vertex outside H. Since every hyperedge appears in precisely n − k of these
pairs, we have

N = T (n, `, k)(n− k);

since every set of ` vertices that does not include v contains at least one hyper-
edge that does not include v, every vertex appears in at least T (n − 1, `, k) of
our pairs, and so

N ≥ nT (n− 1, `, k).

We conclude that T (n, `, k)(n−k) ≥ nT (n−1, `, k), which is just another way
of writing the inequality in (12).

For every choice of positive integers ` and k such that ` ≥ k, the sequence
T (n, `, k)/

(
n
k

)
with n = `, `+ 1, `+ 2, . . . is nondecreasing by (12) and bounded

from above by 1, and so it tends to a limit; let t(`, k) denote the value of this
limit. In [43], Gerhard Ringel (1919–2008) constructed 3-uniform hypergraphs
showing that

t(`, 3) ≤ 4/(`− 1)2 (13)

for all `. In his construction, the vertex set is split into into ` − 1 parts that
are as equally large as possible and then the set of these parts is cyclically
ordered; now three vertices form a hyperedge if and only if either they belong
to the same part or else two of them belong to the same part and the third one
belongs to the part that is next in the cyclic order. (When ` is odd, (13) also
follows from another construction: split the vertex set into b(` − 1)/(k − 1)c
parts that are as equally large as possible and let k vertices form a hyperedge if
and only if they belong to the same part.) Turán’s conjecture about T (n, 4, 3)
implies t(4, 3) = 4/9; in addition, he conjectured that t(5, 3) = 1/4 (see [14,
p. 13]); Erdős [13, p. 30] offered $500 for the determination of even one t(`, k)
with ` > k ≥ 3.

3.2 A lower bound on T (n, `, k)

For every choice of positive integers q, r, n such that r ≤ q ≤ n, Erdős and
Hanani [18] defined

m(q, r, n) as the largest number of hyperedges in a q-uniform
hypergraph on n vertices in which every set of r vertices is contained
in at most one hyperedge

and

M(q, r, n) as the smallest number of hyperedges in a q-uniform
hypergraph on n vertices in which every set of r vertices is contained
in at least one hyperedge.
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They noted that [18, inequality (1)]

m(q, r, n) ≤
(
n
r

)(
q
r

) ≤M(q, r, n) whenever r ≤ q ≤ n

and they stated that it may be conjectured that 1

m(q, r, n) ∼ M(q, r, n) ∼
(
n
r

)(
q
r

) whenever r ≤ q.

This conjecture remained open for over two decades until Vojtěch Rödl [44]
proved it by an ingenious semi-random construction. His method became known
as Rödl nibble and had a great impact on combinatorics (see [31] and the refer-
ences in its section 1.2).

The complement of a hypergraph with vertex set V and hyperedge set E is the
hypergraph with vertex set V and hyperedge set {V −B : B ∈ E}. Since

in a k-uniform hypergraph on n vertices,
every set of ` vertices contains at least one hyperedge

if and only if

in the complement of this hypergraph,
every set of n− ` vertices is contained in at least one hyperedge,

we have
T (n, `, k) = M(n− k, n− `, n).

Since (
n

n− `

)(
`

k

)
=

(
n

k

)(
n− k
n− `

)
(both sides count the number of pairs (A,B) such that A ⊆ B ⊆ {1, 2, . . . , n}
and |A| = k, |B| = `), the lower bound on M(q, r, n) shows that

T (n, `, k) ≥
(
n
k

)(
`
k

) whenever n ≥ ` ≥ k (14)

(which, besides following from (12) by induction on n, is also easy to prove
directly). Rödl’s theorem shows that this bound is asymptotically tight in the
sense that

T (n, n− r, n− q) ∼
(
n
n−q
)(

n−r
n−q
) whenever q ≥ r . (15)

1When f and g are real-valued functions defined on positive integers, we write f(n) ∼ g(n)
to mean that limn→∞ f(n)/g(n) = 1.
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3.3 Turán numbers and Steiner systems

A Steiner system with parameters (n, q, r) such that n ≥ q ≥ r is a q-uniform
hypergraph on n vertices in which every set of r vertices is contained in precisely
one hyperedge. Deciding whether ot not there exists a Steiner system with a
prescribed triple of parameters may be a difficult problem and this problem
amounts to computing a Turán number:

Theorem 3.1. We have

T (n, `, k) =

(
n
k

)(
`
k

) . (16)

if and only if there is a Steiner system with parameters (n, n− k, n− `).

Proof. Given n, `, k, let M denote the right-hand side of (16). On the one
hand, lower bound (14) makes (16) equivalent to the claim that there exists a
k-uniform hypergraph with n vertices and M hyperedges in which every set of
` vertices contains at least one hyperedge. On the other hand, the complement
of a Steiner system with parameters (n, n− k, n− `) is a k-uniform hypergraph
with n vertices in which every set of ` vertices contains precisely one hyperedge.

Now consider an arbitrary k-uniform hypergraph H with n vertices in which
every set of ` vertices contains at least one hyperedge. To complete the proof,
we will show that H has precisely M hyperedges if and only if every set of `
vertices contains precisely one hyperedge. For this purpose, let m denote the
number of hyperedges of H and let N denote the number of pairs (A,B) such
that A is a hyperedge, B is a set of ` vertices, and A ⊆ B; in addition, given a
set B of ` vertices, let w(B) denote the number of hyperedges contained in B.
In this notation,

N = m

(
n− k
`− k

)
and

N =
∑
B

w(B)

with B running through all sets of ` vertices. It follows that

m =

∑
B w(B)(
n−k
`−k
) =

(
n
`

)
+
∑
B(w(B)− 1)(
n−k
`−k
) = M +

∑
B(w(B)− 1)(

n−k
`−k
) .

Since w(B)−1 ≥ 0 for all B, we conclude that m = M if and only if w(B)−1 = 0
for all B.

A Steiner system with parameters (k2+k+1, k+1, 2) is called a projective plane
of order k; its vertices are referred to as points and its hyperedges are referred
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to as lines. There is a unique projective plane of order 2; its seven points can
be labeled as p1, p2, p3, p4, p5, p6, p7 in such a way that the seven lines are

{p1, p2, p4},
{p2, p3, p5},
{p3, p4, p6},
{p4, p5, p7},
{p5, p6, p1},
{p6, p7, p2},
{p7, p1, p3}.

This plane is also known as the Fano plane [21].

On the one hand, Oswald Veblen (1880–1960) and William H. Bussey (1879–
1962) found a way of constructing a projective plane of order k whenever k is
a prime or a power of a prime [53] (see also [45, Theorem 4.2 on p. 93]); in
particular, there are projective planes of orders 2, 3, 4, 5, 7, 8, 9. On the other
hand, Richard H. Bruck (1914–1991) and Herbert J. Ryser (1923–1985) proved
that when k mod 4 is 1 or 2, a projective plane of order k exists only if there are
integers x, y such that k = x2 + y2 (which is the case if and only if every prime
congruent to 3 modulo 4 occurs with an even exponent in the prime factorization
of k); in particular, there is no projective plane of order 6.

It had been thought for a long time that the condition of the Bruck-Ryser
Theorem, necessary for the existence of a projective plane of a prescribed order,
might be also sufficient; in particular, this would imply that there is a projective
plane of order 10. As Conway and Pless [9] put it in 1982,

a question which has long tantalized mathematics is whether or not
a projective plane of order 10 can exist.

Theorem 3.1 shows that this question amounts to asking whether T (111, 109, 100)
= 111. Between 1957 and 1989, some 100 papers dealt with it. This era came
to an end with the announcement [36] by Clement Lam, Larry Thiel, and Stan
Swiercz (see also [35]): their computer search revealed that there is no such
plane.

Apart from these results, we know nothing about the values of k for which there
is a projective plane of order k. And this is just the tip of an iceberg: What are
the values of n, q, r for which there is a Steiner system with parameters (n, q, r)?

Theorem 3.2. There is a Steiner system with parameters (n, q, r) only if(
q − i
r − i

)
divides

(
n− i
r − i

)
for all i = 0, 1, . . . , r − 1. (17)

Proof. We shall prove more: In every Steiner system with parameters (n, q, r),
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every set of i vertices such that 0 ≤ i < r is contained in precisely(
n−i
r−i
)(

q−i
r−i
)

hyperedges. For this purpose, given a set S of i vertices such that 0 ≤ i < r,
let R denote the family of all sets of r vertices that contain S, let Q denote the
family of all hyperedges that contain S, and let N denote the number of pairs
(A,B) such that A ∈ R, B ∈ Q, A ⊆ B. On the one hand, for each A in R
there is a unique hyperedge B such that A ⊆ B; since S ⊆ A ⊆ B, we have
B ∈ Q. It follows that

N = |R| =
(
n− i
r − i

)
.

On the other hand, for each B in Q there are precisely
(
q−i
r−i
)

sets A in R such
that A ⊆ B; it follows that

N = |Q|
(
q − i
r − i

)
.

Comparing the two expressions for N , we conclude that

|Q| =
(
n−i
r−i
)(

q−i
r−i
) .

Steiner system with parameters (n, 3, 2) are called Steiner triple systems. By
Theorem 3.2, they exist only if n mod 6 is 1 or 3. Thomas Penyngton Kirkman
(1806–1895) proved [33] that this necessary condition for their existence is also
sufficient. Haim Hanani (1912–1991) proved in [26] that the necessary condition
of Theorem 3.2 is also sufficient when (q, r) = (4, 3) and added in [27] the cases
(q, r) = (4, 2) and (q, r) = (5, 2). However, the necessary condition of Theo-
rem 3.2 are not always sufficient: we have already noted that the Bruck-Ryser
theorem implies nonexistence of S(43, 7, 2). A theorem of Peter Keevash [31]
subsumes the following special case:

For every pair of positive integers q, r such that q ≥ r
there is a positive integer n0(q, r) such that
Steiner systems with parameters (n, q, r)
exist for all n satisfying (17) and n ≥ n0(q, r).

The appearance of this result was a great breakthrough: until then, only finitely
many Steiner systems with r ≥ 4 were known and none of them had r ≥ 6. For
more on Steiner systems, see [8].
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3.4 An upper bound on T (n, `, k)

The following upper bound is implicit in Erdős’s paper [11]:

Theorem 3.3.

T (n, `, k) ≤ 1 +

(
n
k

)(
`
k

) ln
(
n
`

)
whenever n ≥ ` ≥ k.

Proof. We will follow Erdős’s argument in the form presented in [7, pp. 435–436].
To begin, let us prove the inequality

T
((
n
k

)
,
(
n
k

)
− T (n, `, k) + 1,

(
`
k

))
≤
(
n
`

)
(18)

by exhibiting an
(
`
k

)
-uniform hypergraph H with

(
n
k

)
vertices and

(
n
`

)
edges, in

which every set of
(
n
k

)
− T (n, `, k) + 1 vertices contains at least one hyperedge.

To describe H, let
(
S
i

)
denote the set of all i-point subsets of a set S. In this

notation, the vertex set of H is
(
Y
k

)
for some n-point set Y and the hyperedge set

of H is in a one-to-one correspondence with
(
Y
`

)
: the hyperedge corresponding

to a set X in
(
Y
`

)
is is

(
X
k

)
. Given any set A of

(
n
k

)
− T (n, `, k) + 1 vertices of

H, consider the k-uniform hypergraph H0 with vertex set Y and hyperedge set(
Y
k

)
− A. Since |

(
Y
k

)
− A| < T (n, `, k), some set X of ` vertices of H0 contains

no hyperedge of H0, which means that
(
X
k

)
is disjoint from

(
Y
k

)
− A, and so(

X
k

)
⊆ A, and so A contains a hyperedge of H. This observation completes the

proof of (18).

Inequality (18) is a device for transforming lower bounds on Turán numbers into
upper bounds on Turán numbers. In particular, lower bound (14) guarantees
that

T
((
n
k

)
,
(
n
k

)
− T (n, `, k) + 1,

(
`
k

))
≥

((n
k

)(
`
k

))((n
k

)
− T (n, `, k) + 1(

`
k

) ) ;
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comparing this inequality with (18), we find that

(
n
`

)
≥

((n
k

)(
`
k

))((n
k

)
− T (n, `, k) + 1(

`
k

) ) , and so

(
n
`

)
≥

( (
n
k

)(
n
k

)
− T (n, `, k) + 1

)(`
k)

, and so

(
n
k

)
− T (n, `, k) + 1(

n
k

) ≥
(
n
`

)−1/(`
k), and so

T (n, `, k) ≤ 1 +
(
n
k

)(
1−

(
n
`

)−1/(`
k)
)
.

Since lnx ≤ x− 1 for all positive x, we have

1−
(
n
`

)−1/(`
k) ≤ − ln

((
n
`

)−1/(`
k)
)

=
1(
`
k

) ln
(
n
`

)
;

this observation completes the proof of the theorem.

More on Turán numbers can be found in [47] and elsewhere.

4 More general extremal problems

Given a k-uniform hypergraph F , let ex(F, n) denote the largest number of
hyperedges in a k-uniform hypergraph on n vertices that contains no F . The
task of evaluating Turán functions ex(F, n) subsumes the task of evaluating
Turán numbers: we have T (n, `, k) =

(
n
k

)
− ex(F, n), where F is the k-uniform

hypergraph with ` vertices and
(
`
k

)
hyperedges.

With F the k-uniform hypergraph on 2k vertices that has two disjoint hyper-
edges and only these two hyperedges, the Erdős-Ko-Rado theorem asserts that

ex(F, n) =
(
n−1
k−1
)

whenever n ≥ 2k.

Erdős [12] generalized this: if F is the k-uniform hypergraph on tk vertices that
has t pairwise disjoint hyperedges and only these t hyperedges, then

ex(F, n) =
(
n
k

)
−
(
n−t+1
k

)
whenever n is sufficiently large relative to t and k.

(For k = 2, this was proved earlier by Erdős and Gallai [15].) Here, the extremal
hypergraphs (meaning hypergraphs with n vertices and ex(F, n) hyperedges
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that contain no F ) are constructed by first specifying a set of t− 1 vertices and
then letting a set of k vertices be a hyperedge if and only if it includes at least
one of these t− 1 vertices.

Problems of determining or at least estimating ex(F, n) for prescribed uniform
hypergraphs F constitute a rapidly developing area, which is rich in results.
Here is a small sample:

• When F is the Fano plane, we have

ex(F, n) =
(
n
3

)
−
(bn/2c

3

)
−
(dn/2e

3

)
.

The extremal hypergraphs are constructed by splitting the vertex set into
two parts as equally large as possible (which means that their sizes are
bn/2c and dn/2e) and then letting a set of three vertices be a hyperedge
if and only if it has at least vertex in each of the two parts. This was
conjectured in 1973 by Vera Sós [48] and proved in 2018 by Louis Bellmann
and Christian Reiher [4].

• Peter Keevash and Benny Sudakov [32] determined ex(F, n) when F is the
‘expanded triangle’, which means the 2k-uniform hypergraph with vertex
set V1 ∪ V2 ∪ V3 and precisely three hyperedges, V1 ∪ V2, V2 ∪ V3, and
V3 ∪ V1, such that V1, V2, V3 are pairwise disjoint sets of size k. For all n
that are sufficiently large with respect to k, the extremal hypergraphs are
constructed by splitting the vertex set into two parts and then letting a
set of 2k vertices be a hyperedge if and only if it has an odd number of
vertices in each of the two parts. (Maximizing the number of hyperedges
requires the right choice of the sizes of the two parts, approximately (n+√

3n− 4)/2 and (n−
√

3n− 4)/2.) This proves a conjecture of Frankl [23].

• When F has vertices 1, 2, 3, 4, 5 and hyperedges {1, 2, 3}, {1, 2, 4}, {3, 4, 5},
we have

ex(F, n) =
⌊
n
3

⌋
·
⌊
n+1
3

⌋
·
⌊
n+2
3

⌋
whenever n ≥ 3000:

this is a theorem of Peter Frankl and Zoltán Füredi [24]. Extremal hyper-
graphs can be constructed by splitting the vertex set into three parts
as equally large as possible (which means that their sizes are bn/3c,
b(n + 1)/3c, and b(n + 2)/3c) and then letting a set of three vertices
be a hyperedge if and only if it has a vertex in each of the three parts.

More on ex(F, n) can be found in [30] and elsewhere.

5 Chromatic number of hypergraphs

In 1937, E.W. Miller [39] proposed saying that a family of sets has property B
if there is a set that has a nonempty intersection with each of its members, but

18



does not contain any of them; he used the letter B in honour of Felix Bernstein
(1878–1956), whose work in the early years of the twentieth century involved
this notion. Later on, Paul Erdős and András Hajnal (1931–2016) asked in [16,
p. 119] for the smallest m(k) such that there exists a k-uniform hypergraph
without property B; they noted that the family of all k-point subsets of a (2k−1)-
point set provides the upper bound m(k) ≤

(
2k−1
k

)
and that m(3) = 7, with

the upper bound provided by the Fano plane. (About a decade later, Paul
Seymour [46] and Bjarne Toft [50] proved that m(4) ≤ 23; nearly four decades
after that, Patric Österg̊ard [40] found by an exhaustive computer search that
m(4) ≤ 23.)

Erdős [10, 11] proved that

2k−1 < m(k) < k22k+1 (19)

and then Erdős and László Lovász [20, p. 610] stated that “it seems likely that
m(k)/2k → ∞”. This hunch was confirmed by József Beck [2]: he proved
that m(k) ≥ 1

52k lg k whenever k ≥ 2100 and then improved this lower bound
in [3]. More recently, Jaikumar Radhakrishnan and Aravind Srinivasan [41,
Theorem 2.1] improved Beck’s bounds even further, to m(k) ≥ 7

102k
√
k/ ln k

for all sufficiently large k, and then Danila D. Cherkashin and Jakub Kozik [6]
found a simpler proof of this stronger bound.

In [11], Erdős wrote “A reasonable guess seems to be that m(k) is of the order
k 2k ”; this conjecture remains open. Radhakrishnan and Srinivasan proved
that every k-uniform hypergraph without property B and with fewer than k2k

hyperedges must have more than k2/4k ln 2k vertices [42, Lemma 2].

Erdős and Hajnal [17] defined the chromatic number χ(H) of a hypergraph
H (they used the term ‘set-system’ instead of ‘hypergraph’) as the smalest t
such that the vertex set of H can be split into t sets, none of which contain
a hyperedge. They pointed out [17, p. 61] that χ(H) ≤ 2 if and only if the
hyperedge set of H has property B. Now let m(k, s) denote the smallest number
of hyperedge in a k-uniform hypergraph of chromatic number greater than s. In
this notation, m(k) = m(k, 2); we shall prove Erdős’s bounds (19) in this more
general context.

Theorem 5.1. sk−1 < m(k, s) < dk2sk+1 ln se

Proof. To prove the upper bound on m(k, s), let µ(n, k, s) stand for the small-
est possible number of monochromatic k-point subsets of an n-point set whose
points are coloured by s colours. The combinatorial content of the argument
used by Erdős in [11] can be extracted in the claim that

if s, n, k,∆ are positive integers such that n ≥ s(k − 1)

and sn < T (
(
n
k

)
,
(
n
k

)
−∆, µ(n, k, s)), then m(k, s) ≤ ∆. (20)

To prove (20), write V0 = {1, 2, . . . , n} and let V1 denote the set of all k-
point subsets of V0. Then consider the µ(n, k, s)-uniform hypergraph H1 with
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vertex-set V1, whose hyperedges are in a one-to-one correspondence with the
sn colourings of V0 by colours {1, 2, . . . , s}: for each of these colourings, the
corresponding hyperedge consists of some µ(n, k, s) of the (possibly many more)
sets in V1 that are made monochromatic by the colouring. Now assume that

sn < T (
(
n
k

)
,
(
n
k

)
−∆, µ(n, k, s)).

Under this assumption, H1 has fewer than T (
(
n
k

)
,
(
n
k

)
−∆, µ(n, k, s)) hyperedges,

and so some set S of
(
n
k

)
−∆ of its vertices contains none of its hyperedges; this

means that V1 − S meets every hyperedge of H1 in at least one vertex, and so
every colouring of V0 by s colours makes at least one set in V1−S monochromatic.
To summarize, the hypergraph with vertex set V0 and hyperedge set V1 − S is
k-uniform, has ∆ hyperedges, and its chromatic number is larger than s. This
proves (20).

The rest is counting. Its ingredients are

(i) m(k, s) ≤

⌈ (
n
k

)
n ln s

µ(n, k, s)

⌉
for all n such that n > s(k − 1),

(ii) if s divides n and n ≥ sk, then µ(n, k, s) = s
(
n/s
k

)
,

(iii)

(
sk2

k

)
≤ sk+1

(
k2

k

)
;

together, these three ingredients imply that

m(k, s) ≤


(
sk2

k

)
sk2 ln s

µ(sk2, k, s)

 =


(
sk2

k

)
k2 ln s(

k2

k

)
 ≤ ds

k+1k2 ln se.

To prove (i), note that µ(n, k, s) > 0 if and only if n > s(k − 1) and invoke the
Katona-Nemetz-Simonovits lower bound (14) on Turán numbers. This bound
implies that

T (
(
n
k

)
,
(
n
k

)
−∆, µ(n, k, s)) ≥

( (
n
k

)
µ(n, k, s)

)
( (n

k

)
−∆

µ(n, k, s)

) ≥ ( (
n
k

)(
n
k

)
−∆

)µ(n,k,s)
;

substituting ∆/
(
n
k

)
for t in the strict inequality 1 − t < e−t which is valid for

all nonzero t, we get( (
n
k

)(
n
k

)
−∆

)µ(n,k,s)
> exp

(
∆µ(n, k, s)(

n
k

) )
.
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It follows that

∆ ≥
(
n
k

)
n ln s

µ(n, k, s)
⇒ T (

(
n
k

)
,
(
n
k

)
−∆, µ(n, k, s)) > sn,

and so (20) implies that

m(k, s) ≤

⌈ (
n
k

)
n ln s

µ(n, k, s)

⌉
.

To prove (ii), note that µ(n, k, s) is the minimum of
∑s
r=1

(
dr
k

)
over all choices

of nonnegative integers d1, . . . ds such that
∑s
r=1 dr = n. Now consider non-

negative integers d1, . . . ds whose average is an integer. Asuming that not all of
these integers are equal, we shall find nonnegative integers c1, . . . cs such that∑s
r=1 cr =

∑s
r=1 dr and

∑s
r=1

(
cr
k

)
<
∑s
r=1

(
dr
k

)
; of course, this will imply (ii).

By assumption, some di is smaller than average and some dj is larger than
average; since the average is an integer, it follows that dj ≥ di + 2. Setting

cr =


dr + 1 if r = i,

dr − 1 if r = j,

dr for all other r,

we get

s∑
r=1

(
dr
k

)
−

s∑
r=1

(
cr
k

)
=
(
di
k

)
+
(
dj
k

)
−
(
di+1
k

)
−
(
dj−1
k

)
=
(
dj−1
k−1

)
−
(
di
k−1
)
> 0.

To prove (iii), note that

sk+1

(
k2

k

)
(
sk2

k

) = sk+1
k−1∏
i=0

k2 − i
sk2 − i

= sk
k−1∏
i=1

k2 − i
sk2 − i

= s

k−1∏
i=1

sk2 − si
sk2 − i

= s

k−1∏
i=1

(
1− (s− 1)i

sk2 − i

)
and that, since (1− x)k−1 ≥ 1− (k − 1)x for all nonnegative x,

s

k−1∏
i=1

(
1− (s− 1)i

sk2 − i

)
≥ s

(
1− (s− 1)(k − 1)

sk2 − k + 1

)k−1
≥ s

(
1− (s− 1)(k − 1)2

sk2 − k + 1

)
≥ 1.

Noga Alon [1] conjectured that lims→∞m(k, s)/sk exists for every k.
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[15] P. Erdős and T. Gallai, On maximal paths and circuits of graphs. Acta
Math. Acad. Sci. Hungar. 10 (1959), 337–356.
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