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EXTREMAL GRAPH THEORY

1 Turán’s theorem

A complete k-partite graph is a graph whose vertex-set can be split into k pair-
wise disjoint parts (not necessarily all of them empty) so that two vertices are
adjacent if and only if they belong to different parts.

In 1940, while imprisoned in a labour camp in Hungary, Paul Turán proved a
seminal theorem:

Theorem 1.1 (Turán [47]). Let n, r be integers such that r ≥ 2. Among all
the graphs with n vertices and clique number less than r, the unique graph with
the largest number of edges is the complete (r − 1)-partite graph, whose r − 1
parts have sizes as nearly equal as possible (meaning that every two of these
sizes differ by at most one).

(Erdős [19] later reported that Turán was informed after he finished his pa-
per that the special case r = 2 had been proved in 1907 by W. Mantel and
others [43].)

We have defined the Turán number T (n, r, k) as the smallest number of hyper-
edges in a k-uniform hypergraph on n vertices in which every set of r vertices
contains at least one hyperedge and we have defined the Turán function ex(F, n)
as the largest number of hyperedges in a k-uniform hypergraph on n vertices
that does not contain hypergraph F . Now we will consider the case of k = 2,
when F is a graph. To begin, let Kr denote the complete graph with r vertices,
so that T (n, r, 2) = ex(Kr, n). Turán’s theorem specifies the value of ex(Kr, n)
in an elegant combinatorial way. This specification can be translated into an
arithmetic formula, which some find less elegant:

ex(Kr, n) =

(
1− 1

r − 1

)
n2

2
− b(r − 1− b)

2(r − 1)
where b = n mod (r − 1). (1)

Let us verify that Theorem 1.1 implies identity (1).

In a graph, adjacent vertices are called neighbours.

Given integers r and n such that 2 ≤ r ≤ n, consider integers a, b defined by
n = a(r − 1) + b and 0 ≤ b < r − 1. In the complete (r − 1)-partite graph on
n vertices whose r− 1 parts have sizes as nearly equal as possible, b parts have
size a + 1 and r − 1 − b parts have size a; consequently, b(a + 1) vertices have
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precisely n − (a + 1) neighbours and (r − 1 − b)a vertices have precisely n − a
neighbours. The total number of edges comes to

b(a+ 1)(n− a− 1) + (r − 1− b)a(n− a)

2
;

it is a routine matter to verify that this quantity equals the right-hand side of (1).

Thirty years later, Erdős found a beautiful refinement of Turán’s theorem.
There, dG(v) denotes the degree of a vertex v in a graph G, defined as the
number of neighbours of v in G.

Theorem 1.2 (Erdős [17]). Let r be an integer greater than 1. For every graph
G with clique number less than r, there is a graph H such that

(i) G and H share their vertex-set V ,
(ii) dG(v) ≤ dH(v) for all v in V ,
(iii) H is complete (r − 1)-partite,
(iv) if dG(v) = dH(v) for all v in V , then H = G.

To derive Theorem 1.1 from Theorem 1.2, consider any graph G with n vertices
and clique number less than r. Theorem 1.2 guarantees the existence of a
complete (r − 1)-partite graph H such that either H = G or else G has fewer
edges than H. In particular, if G has the largest number of edges among all
the graphs with n vertices and clique number less than r, then G is a complete
(r − 1)-partite graph. Finally, sizes of any two of the r − 1 parts of G must
differ by at most 1: else moving a vertex from the larger part to the smaller one
would increase the number of edges in G.

Proof of Theorem 1.2. Given an arbitrary graph G with a nonempty set V of
vertices, we shall find
• an integer k greater than 1,
• a clique of k − 1 vertices in G, and
• a complete (k − 1)-partite graph H with properties (i), (ii), (iii).

This can be done by the algorithm

V1 = V , k = 1;
while Vk 6= ∅
do choose a vertex wk in Vk with the largest number of neighbours in Vk;

Vk+1 = the set of neighbours of wk in Vk, k = k + 1;
end
return k and {w1, w2, . . . wk−1} and the complete (k − 1)-partite graph

with parts V1 − V2, V2 − V3, . . . , Vk−1 − Vk;

(Of course, Vk−1 − Vk = Vk−1.) The while loop maintains the invariant

vertices w1, w2, . . . wk−1 are pairwise adjacent
and adjacent to all vertices in Vk
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and so the set {w1, w2, . . . wk−1} returned by the algorithm is a clique. With H
standing for the complete (k − 1)-partite graph returned by the algorithm, we
have

dH(v) = (n− |Vj |) + |Vj+1| whenever v ∈ Vj − Vj+1.

In the input graph G, the number of neighbours that any vertex in Vj has in
Vj is at most the number of neighbours that wj has in Vj , which is |Vj+1|; it
follows that

dG(v) ≤ (n− |Vj |) + |Vj+1| whenever v ∈ Vj .
and so dG(v) ≤ dH(v) for all v in V . Furthermore, if dG(v) = dH(v) for a
vertex v in Vj − Vj+1, then v must be adjacent to all the vertices outside Vj ;
consequently, if dG(v) = dH(v) for all v, then

u ∈ Vi − Vi+1, v ∈ Vj − Vj+1, i < j ⇒ u and v are adjacent,

and so every edge of H is an edge of G; this together with (ii) implies that
G = H. �

2 The Erdős-Stone theorem

On August 14, 1941, Paul Erdős and two graduate students from Princeton,
Shizuo Kakutani (1911 – 2004) and Arthur Stone (1916–2000), were taking a
stroll in Southampton on Long Island. When Kakutani took a few photographs
of Erdős and Stone against the background of what turned out to be a secret
radar station, a guard told them to leave and afterwards reported that “three
Japanese had taken pictures of the installation and then departed in a suspicious
hurry”. The three mathematicians were arrested together at lunch, questioned
separately by the FBI, and finally released later that night; the New York Daily
News reported the incident the next day under the headline 3 aliens nabbed
at short-wawe station. Five years later, two of the three aliens published
a powerful variation on the theme of Turán’s theorem. This variation gives an
upper bound on ex(Kr(s), n), where Kr(s) stands for the complete r-partite
graph with precisely s vertices in each part. Its simplified version goes as follows:

Theorem 2.1 (Erdős and Stone [30]). For every choice of integers r, s and a
real number ε such that r ≥ 2, s ≥ 1, ε > 0, there is a positive integer n0(r, s, ε)
such that

n ≥ n0(r, s, ε) ⇒ ex(Kr(s), n) <

(
1− 1

r − 1
+ ε

)(
n

2

)
.

To prove Theorem 2.1, we will follow the line of reasoning used by Béla Bollobás
and Paul Erdős [6]. The idea is to use induction on r: having found in G a
large Kr−1(t), we will proceed to find in G a Kr(s) such that, for each i =
1, 2, . . . , r − 1, the i-th part of the Kr(s) is a subset of the i-th part of the
Kr−1(t). The heart of the argument goes as follows.
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Lemma 2.1. Let r, s, t be positive integers such that r ≥ 2 and s ≤ t. If a graph
F contains pairwise disjoint sets T1, . . . , Tr of vertices such that

• T1, T2, . . . , Tr−1 are parts of a complete (r − 1)-partite graph,

• |T1| = |T2| = . . . , |Tr−1| = t and |Tr| > (s− 1)
(
t
s

)r−1
,

• every vertex in Tr has at least (r − 2)t+ s neighbours in ∪r−1i=1 Ti,

then F contains a Kr(s) with parts S1, S2, . . . , Sr such that Si ⊆ Ti for all
i = 1, 2, . . . , r.

Proof. Since every vertex in Tr has at least (r − 2)t+ s neighbours in ∪r−1i=1 Ti,
it has at least s neighbours in each of T1, T2, . . . , Tr−1, and so every vertex w
in Tr can be labeled by a tuple (S1(w), . . . , Sr−1(w)) such that each Si(w) is a

set of s neighbours of w in Ti. Since there are
(
t
s

)r−1
possible labels, the lower

bound on |Tr| guarantees that at least one label appears on at least s distinct
vertices; any s of these vertices may form Sr.

Proof of Theorem 2.1. Let us write

c = 1− 1

r − 1
.

Given r, s, ε, we have to declare a value of n0(r, s, ε); then, given any graph G
whose number n of vertices is at least n0(r, s, ε) and whose number of edges is
at least (c+ ε)

(
n
2

)
, we have to find a Kr(s) in G. In doing this, we may assume

that
c+ ε ≤ 1;

actually, this inequality follows from the lower bound on the number of edges
of G.

We will use induction on r. In G, we will find first a complete (r − 1)-partite
graph with parts T1, T2, . . . , Tr−1 of a large size t and then a set Tr that satisfies
the hypothesis of Lemma 2.1. The first step is trivial when r = 2 and taken
care of by the induction hypothesis when r > 2. The second step would be
easier to carry out if we could assume that every vertex of G has a large degree.
Unfortunately, this is not the case: the assumption that the number of edges of
G is at least (c + ε)

(
n
2

)
means only that the average degree of a vertex in G is

at least (c + ε)(n − 1) and allows for individual vertices of very small degrees.
Fortunately, we can find in G a subgraph F with a large number m of vertices
such that the every vertex of F has degree larger than (c+ε/2)(m−1) of vertices
of F . We will replace G by F at the very start of the proof and carry out both
steps in F .

The revised outline goes as follows. Given r, s and ε, we will choose

• first a positive integer t large enough with respect to r, s, ε,
• then a positive integer m0 large enough with respect to r, s, ε, and t,
• and finally a positive integer n0 large enough with respect to ε and m0.
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Then we will argue in stages:

Stage 1: As long as n0 is large enough with respect to ε and m0, we can
find in G a subgraph F with m vertices such that m ≥ m0 and such that every
vertex of F has degree larger than (c+ ε/2)(m− 1).

Stage 2: As long as m0 is large enough with respect to r and t, we can find
in F a complete (r − 1)-partite graph K with parts of size t.

Stage 3: As long as t is large enough with respect to r, s, ε and m0 is large

enough with respect to r, s, ε, and t, we can find in F more than (s− 1)
(
t
s

)r−1
vertices such that each of them has at least (r − 2)t+ s neighbours in K.

Now for the details. Stage 1 can be carried out by the following algorithm,
where |F | denotes the number of vertices in F :

F = G;
while F has a vertex v of degree at most (c+ ε/2)(|F | − 1)
do remove v (and all the edges that have v for an endpoint) from F ;
end

In the graph F produced by this algorithm, every vertex has degree larger than
(c+ ε/2)(|F | − 1). However, it may not be immediately obvious that F has any
vertices at all: as we are peeling off the deficient vertices one by one, we are
making F smaller and smaller like a kitten unravelling a ball of wool. Will F not
disintegrate completely and disappear in the end? The following computation
shows that the answer is an emphatic “no”: the total number of edges the
algorithm removes from the input graph G in the process of constructing the
output graph F is at most

∑n
i=1 (c+ ε/2) (i− 1), and so F is left with at least

(ε/2) ·
(
n
2

)
edges. Writing m = |F |, we conclude that(

m

2

)
≥ (ε/2)·

(
n

2

)
≥ (ε/2)·

(
n0
2

)
,

and so m ≥ m0 as long as n0 is large enough with respect to ε and m0. (Here,
“large enough” means n0 ≥ 1 + (

√
2/ε)m0.)

In Stage 2, we distinguish between two cases. In case r = 2 (the induction
basis), insisting on m0 ≥ t is enough to guarantee that F contains a set of t
vertices. In case r > 2 (the induction step), insisting on

m0 ≥ n0(r − 1, t, 1/(r − 1)(r − 2)

is enough to guarantee that F contains a Kr−1(t): to see this, note that F has
more than c

(
m
2

)
edges and that

c =

(
1− 1

r − 2

)
+

1

(r − 1)(r − 2)
.
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In Stage 3, let L denote the set of vertices of F that lie outside K and have at
least (r−2)t+s neighbours in K. To get a lower bound on |L|, we will estimate
in two different ways the number x of edges of F that have one endpoint in
K and the other endpoint outside K. Since every vertex in K has more than
(c+ ε/2)(m− 1) neighbours in F , it has more than (c+ ε/2)(m− 1)− (|K| − 1)
neighbours outside K, and so

x ≥ |K| · ((c+ ε/2)(m− 1)− (|K| − 1)) > |K| · ((c+ ε/2)m− |K|).

Since every vertex in L has at most |K| neighbours in K and every vertex
outside K ∪ L has fewer than (r − 2)t+ s neighbours in K, we have

x ≤ |L| · |K|+ |F − (K ∪ L)|((r − 2)t+ s) ≤ |L| · |K|+m((r − 2)t+ s).

Comparing the upper bound on x with the lower bound gives

|L| · |K|+m((r − 2)t+ s) > |K|((c+ ε/2)m− |K|),

and so

|L| > ((c+ ε/2)m− |K|)− m((r − 2)t+ s)

|K|
= m

(
ε

2
− s

(r − 1)t

)
− (r − 1)t;

as long as t is large enough to guarantee s/(r − 1)/t < ε/8 and and m is
large enough to guarantee that mε/8 > (r − 1)t, we can conclude that that

|L| > mε/4. To complete the proof, note that mε/4 > (s− 1)
(
t
s

)r−1
as long as

m is large enough with respect to r, s, ε, and t. �

Let s(r, ε, n) stand for the largest nonnegative integer s such that every graph
with n vertices and at least (

1− 1

r − 1
+ ε

)(
n

2

)
edges contains a Kr(s). With this notation, the Erdős-Stone theorem shows
that

s(r, ε, n)→∞ as n→∞.

The best known bounds on s(r, ε, n) are

(1− δ) log n

log(1/ε)
< s(r, ε, n) < (2 + δ)

log n

log(1/ε)

(see [38]); for every positive δ, they hold whenever ε is small enough with respect
to δ, r and n is large enough with respect to δ, r, ε.
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3 The Erdős-Simonovits formula

The chromatic number χ(F ) of a graph F is the smallest number of colours
that can be assigned to the vertices of F in such a way that every two adjacent
vertices receive distinct colours. (This definition is consistent with the definition
of the chromatic number of a hypergraph.) Equivalently, χ(F ) is the smallest
r such that F is a subgraph of some complete r-partite graph. Graphs F with
χ(F ) ≤ 2 are called bipartite.

Paul Erdős and Miklós Simonovits pointed out a fundamental corollary of the
Erdős-Stone theorem:

Theorem 3.1 (Erdős and Simonovits [28]). For every graph F with at least
one edge, we have

lim
n→∞

ex(F, n)(
n
2

) = 1− 1

χ(F )− 1
. (2)

Proof. Writing r = χ(F ), s = |F |, we claim that(
1− 1

r − 1

)(
n− r + 2

2

)
≤ ex(F, n) ≤ ex(Kr(s), n); (3)

formula (2) follows from (3) combined with Theorem 2.1. To justify the lower
bound on ex(F, n) in (3), observe that it is a lower bound on the number of
edges in the complete (r − 1)-partite graph with parts of size bn/(r − 1)c and
that no complete (r − 1)-partite graph has a subgraph isomorphic to F . The
upper bound is justified by observing that F is a subgraph of Kr(s).

When f and g are real-valued functions defined on positive integers, we write
f(n) ∼ g(n) to mean that limn→∞ f(n)/g(n) = 1.

The Erdős-Simonovits formula (2) shows that

ex(F, n) ∼
(

1− 1

χ(F )− 1

)(
n

2

)
whenever χ(F ) ≥ 3.
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4 When F is bipartite

When f and g are real-valued functions defined on positive integers, we write
f(n) = o(g(n)) to mean that limn→∞ f(n)/g(n) = 0.

When χ(F ) = 2, the Erdős-Simonovits formula (2) provides no asymptotic
formula for the Turán function ex(F, n): it shows only that

ex(F, n) = o(n2).

4.1 An Erdős-Simonovits conjecture

Erdős and Simonovits [16, p. 119] conjectured that a simple asymptotic formula
for ex(F, n) exists even if χ(F ) = 2:

Conjecture 4.1. For every bipartite graph F there are constants c and α such
that 1 ≤ α < 2 and

ex(F, n) ∼ cnα. (4)

In [21, page 6], Erdős offered $500 for a proof or disproof. Conjecture 4.1 is
known to hold true for certain special choices of F . Let us elaborate.

It follows from a conjecture of Erdős and Vera Sós that (5) every tree T of order
k satisfies

ex(T, n) ∼ k − 2

2
n. (5)

More precisely, the Erdős-Sós conjecture [13, p. 30] is:

Conjecture 4.2. Every tree T of order k satisfies

ex(T, n) ≤ k − 2

2
n. (6)

Since every tree T of order k satisfies ex(T, n) ≥ (k − 2)n/2 whenever n is a
multiple of k (to see this, consider the disjoint union of complete graphs of order
k − 1), inequality (6) implies (5).

If T is the star of order k, then clearly ex(T, n) = b(k − 2)n/2c, which implies
(6). An old result of Erdős and Gallai [25, Theorem(2.6)] asserts that the
path of order k also satisfies (6) in place of T . For additional classes of trees
which satisfy the Erdős-Sós conjecture, see [42, 10, 46, 32]. Miklós Ajtai, János
Komlós, and Endre Szemerédi have announced that they have proved (6) for all
trees T of order k and all n sufficiently large with respect to k.
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Another class of graphs known to satisfy the Erdős-Simonovits conjecture are
particular complete bipartite graphs: Zoltán Füredi [35] proved that

ex(Kr,2, n) ∼
√
r − 1

2
n3/2 whenever r ≥ 2.

(The special case of r = 2 had been established three decades earlier by William
Brown [9] and, independently and simultaneously, by Erdős, Alfréd Rényi, and
Vera Sós [27].) In addition,

ex(K3,3, n) ∼ 1

2
n5/3

has been established by Brown’s lower bound in [9] and Füredi’s matching upper
bound in [34].

4.2 A digression:
Jensen’s inequality and binomial coefficients

A real-valued function f defined on an interval I is called convex if

x, y ∈ I, 0 ≤ λ ≤ 1 ⇒ f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Straightforward induction on n shows that

f(
∑n
i=1 λixi) ≤

∑n
i=1 λif(xi)

for every convex function f , for all numbers x1, . . . , xn in its domain, and for
all choices of nonnegative numbers λ1, . . . , λn that sum up to 1. This is the
finite form of an inequality published in 1906 by Danish engineer Johan Ludwig
William Valdemar Jensen (1859–1925), who, while successful in his career at the
Copenhagen Telephone Company, worked on mathematics in his spare time [39].

The following corollary of Jensen’s inequality involves a generalization of the
combinatorial notion

(
d
k

)
to a real-valued function

(
x
k

)
of a real variable x that

reduces to
(
d
k

)
when x assumes a nonnegative integer value d:(

x
k

)
= x(x− 1) . . . (x− k + 1)/k!

Lemma 4.1. If d1, . . . , dn are nonnegative integers and
∑n
i=1 di ≥ n(k − 1),

then
n∑
i=1

(
di
k

)
≥ n

(∑n
i=1 di/n

k

)
.

Proof. Since the derivative of
(
x
k

)
is an increasing function of x in the interval

(k− 1,∞), function
(
x
k

)
is convex in this interval; it follows that the function f

defined on all reals by

f(x) =

{
0 when x ≤ k − 1,(
x
k

)
when x ≥ k − 1
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is convex and so Jensen’s inequality with λi = 1/n for all i guarantees that

n∑
i=1

(
di
k

)
=

n∑
i=1

f(di) ≥ nf

(
n∑
i=1

di/n

)
= n

(∑n
i=1 di/n

k

)
.

4.3 When F is a complete bipartite graph

Turán’ wrote his seminal paper [47] in Hungarian. Thirteen years later, he
reproduced the theorem and its proof in a paper [48] written in English and
there he put them in a broader context. At the same time, he co-authored with
Tamás Kővári and Vera Sós another classic:

Theorem 4.1 (Kővári, Sós, and Turán [40]).

ex(Kr,s, n) ≤ (r − 1)1/sn2−1/s + (s− 1)n/2. (7)

Proof. Given a graph G with n vertices and m edges which contains no Kr,s,
we aim to prove that m is at most the right-hand side of (7). For this purpose,
we may assume that

m > (s− 1)n/2 : (8)

otherwise we are done. Under this assumption, consider the set P of all pairs
(v, S) such that v is a vertex of G and S is a set of s neighbours of v. Since

each v participates in precisely
(
d(v)
s

)
such pairs, we have |P| =

∑
v

(
d(v)
s

)
; since∑

v d(v) = 2m, it follows from (8) and Lemma 4.1 that

|P| ≥ n
(

2m/n

s

)
.

Since G contains no Kr,s, each S participates in at most r − 1 pairs in P, and
so

|P| ≤
(
n

s

)
(r − 1).

Comparing the two bounds on |P|, we find that

n

(
2m/n

s

)
≤
(
n

s

)
(r − 1). (9)

Since (
2m/n

s

)
(
n

s

) ≥

 2m

n
− (s− 1)

n


s

,

inequality (9) implies that that m is at most the right-hand side of (7).
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When f and g are nonnegative real-valued functions defined on positive integers,
we write f(n) = O(g(n)) to mean that f(n) ≤ cg(n) for some constant c and
all sufficiently large n; we write f(n) = Ω(g(n)) to mean that f(n) ≥ cg(n) for
some positive constant c and all sufficiently large n.

The special case s = r of the Kővári-Sós-Turán theorem shows that

ex(Kr,r, n) = O(n2−1/r). (10)

As we have seen, this upper bound is tight when r = 2 and r = 3. For larger
values of r, the best known lower bound is weaker:

ex(Kr,r, n) = Ω(n2−2/(r+1)).

This is a special case of a general lower bound:

Theorem 4.2 (Erdős and Joel Spencer [29]). If F is a graph with s vertices
and t edges such that t ≥ 2, then

ex(F, n) = Ω(n2−(s−2)/(t−1)).

Proof. Given positive integers n and m, let G denote the set of all graphs with
vertices 1, 2, . . . , n and with m edges. Let P denote the set of all pairs (G,H)
such that G ∈ G and H is a subgraph of G isomorphic to F . The number of one-
to-one mappings from the vertex set of F to {1, 2, . . . , n} is n(n−1) · · · (n−s+1),
and so at most ns graphs with vertices coming from {1, 2, . . . , n} are isomorphic
to F . Since each such graph participates in((n

2

)
− t

m− t

)
pairs in P, we have

|P| ≤ ns
((n

2

)
− t

m− t

)
.

Since

|G| =

((n
2

)
m

)
,

it follows that some G in G contains at most M subgraphs isomorphic to F ,
where

M = ns

((n
2

)
− t

m− t

)
((n

2

)
m

) = ns

(
m

t

)
((n

2

)
t

) ≤ ns
(

2m

n2

)t
.

If m = b 18n
2−(s−2)/(t−1)c, then ns−2t(2m)t−1 ≤ (1/4)t−1, and so M ≤ m/2.

In this case, removing an edge from each subgraph of G isomorphic to F , we
get a graph with n vertices and at least m/2 edges which contains no subgraph
isomorphic to F .
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4.4 When every subgraph of F has a vertex of degree at
most r

Erdős [16, p. 120] conjectured that (10) can be generalized:

Conjecture 4.3.
ex (F, n) = O(n2−1/r)

for every bipartite graph F such that every subgraph of F has a vertex of degree
at most r.

In [24, p. 64] he attributed this conjecture as well as the following companion
conjecture jointly to Simonovits and himself.

Conjecture 4.4.
ex (F, n) = Ω(n2+ε−1/r)

for every bipartite graph F with minimum degree greater than r.

For a proof or disproof of each of these conjectures he offered $500. Regarding
the special case r = 2, he wrote earlier [20, p. 14]

Simonovits and I asked: Is it true that [ex(F, n) = O(n3/2) for every
bipartite graph F such that every subgraph of F has a vertex of
degree at most 2]? We now expect that [this] is false, but can prove
nothing.

and [22, pp.64–65]:

I state some of our favourite conjectures with Simonovits [. . . ] Our
conjecture (perhaps more modestly it should be called a guess) is
that ex(F, n) = O(n3/2) holds if any only if F is bipartite and has
no subgraph each vertex of which has degree greater than 2. Unfor-
tunately we could neither prove the necessity nor the sufficiency of
this attractive, illuminating (but perhaps misleading) conjecture .

Noga Alon, Michael Krivelevich and Benny Sudakov [2] proved the existence of
a positive constant c such that

ex(F, n) = O(n2−c/r)

for every bipartite graph F such that every subgraph of F has a vertex of degree
at most r.
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4.5 When F is a cycle

In [14, p. 33], Erdős wrote

. . . I can also prove that [ ex(C2k, n) = O(n1+1/k)] . . .

and later [18, p. 78] he commented

I never published a proof of [ ex(C2k, n) = O(n1+1/k)] since my
proof was messy and perhaps even not quite accurate and I lacked
the incentive to fix everything up since I never could settle various
related sharper conjectures — all these have now been proved by
Bondy and Simonovits — their paper will soon appear.

The first published proof of this upper bound does indeed come from Adrian
Bondy and Miklós Simonovits [8]; the best currently known upper bound is Oleg
Pikhurko’s [44]

ex(C2k, n) ≤ (k − 1)n1+1/k + 16(k − 1)n.

Erdős and Simonovits [36, Conjecture 4.10] conjectured that n1+1/k is the order
of magnitude of ex(C2k, n) for every constant k:

Conjecture 4.5. ex(C2k, n) = Ω(n1+1/k).

This conjecture is known to hold true when k = 2 (as we have already seen),
when k = 3, and when k = 5 (these last two lower bounds have been established
by Clark Benson [3] in a slightly different setting). When k is arbitrary, Theo-
rem 4.2 gives ex(C2k, n) = Ω(n1+/(2k−1)) and the best currently known lower
bound comes from Felix Lazebnik, Vasiliy Ustimenko, and Andrew Woldar [41]:

ex(C2k, n) = Ω(n1+2/(3k−2)).

Rather than excluding cycles of a single prescribed length, one may consider
excluding cycles of all lengths up to a prescribed limit. Such considerations lead
to a generalization of the notion of ex(F, n): when F is a family of graphs,
ex(F , n) denotes the largest number of edges in a graph on n vertices that

contains no member of F . In particular, ex({C3, C4, . . . , C`}, n) is the largest
number of edges in a graph on n vertices where every cycle has length at least
`+ 1. Noga Alon, Shlomo Hoory, and Nathan Linial [1] proved that

ex({C3, C4, . . . , C2k}, n) ≤ 1

2
n1+1/k +

1

2
n.

More on Turán functions ex(F, n) where F is a graph and ex(F , n) where F
is a family of graphs can be found, for instance, in [33], [7], and [36].
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5 Prehistory

Here is an excerpt (with notation changed for the sake of consistency with these
notes) from Erdős’s paper [19]:

As is well known, the theory of extremal graphs really started when
Turán determined ex(Kr, n) and raised several problems which showed
the way to further progress. In 1935 I needed (the c’s will denote
positive absolute constants)

ex(C4, n) < c1n
3/2 (11)

for the following number theoretic problem [ . . . ] I proved (11) with-
out much difficulty [ . . . ] I asked if (11) is best possible and Miss
E. Klein proved

ex(C4, n) > c2n
3/2

for every c2 > 2−3/2 and n > n0(c2). Being struck by a curious
blindness and lack of imagination, I did not at that time extend
the problem from C4 to other graphs and thus missed founding an
interesting and fruitful new branch of graph theory.

When Erdős reminisced about this episode in his lectures, he liked to add [45,
pp. 153–154]:

Crookes observed that leaving a photosensitive film near a cathode-
ray tube causes damage to the film: it becomes exposed. He con-
cluded that nobody should leave films near a cathode-ray tube.
Röntgen observed the same phenomenon a few years later and con-
cluded that this can be used for filming the inside of various objects.
[ . . . ] It is not enough to be in the right place at the right time. You
should also have an open mind at the right time.

6 Beyond Turán functions

The term “extremal graph theory” denotes a wide area of results and ques-
tions where a graph parameter is maximized subject to other parameters being
constrained. Here are two examples:

Theorem 6.1 (Corollary of Theorem 1′ in [26]). Let G be a graph with n
vertices and m edges. If k is a positive integer such that n > 24k and m ≥
(2k − 1)n− 2k2 + k + 1, then G contains k pairwise vertex-disjoint cycles.
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1 The lower bound on m in this theorem cannot be reduced. To see this, consider
the graph with 2k− 1 vertices of degree n− 1 and n− 2k+ 1 vertices of degree
2k − 1.

Conjecture 6.1 (Case k = 2 of Conjecture 2 in [23]). Every triangle-free graph
of order n can be made bipartite by deletion of at most n2/25 edges.

The constant 1/25 in this conjecture cannot be reduced. To see this, consider
the graph whose vertex-set is the union of pairwise disjoint sets V1, V2, V3, V4, V5
of equal size, where a vertex in Vi is adjacent to a a vertex in Vj if and only
if |i − j| is 1 or 4. A weaker version of Conjecture 6.1 with the constant 1/25
raised to 1/18 has been proved by Erdős, Ralph Faudree (1940–2015), János
Pach, and Joel Spencer [31, Theorem 2].

Several survey articles, book chapters, and entire books are devoted to extremal
graph theory. These include [4], [45], [37, Chapter 10], [5, Chapter IV], [4].
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[28] P. Erdős and M. Simonovits, A limit theorem in graph theory, Studia Sci.
Math. Hungar 1 (1966), 51–57.
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[33] Z. Füredi, Turán type problems, in: Surveys in Combinatorics, Cambridge
University Press, 1991, pp. 253-300.
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[35] Z. Füredi, New asymptotics for bipartite Turán numbers, J. Combin. The-
ory Ser. A 75 (1996), 141–144.
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Erdős-Stone theorem, J. Combin. Theory Ser. B 85 (2002), 222–254.

[39] J. L. W. V. Jensen, Sur les fonctions convexes et les inégalités entre les
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