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A GLORIOUS BEGINNING

In 1845, Joseph Bertrand [3] conjectured that for every integer n greater than
3 there is at least one prime p such that n < p < 2n − 2. The slightly weaker
proposition,

for every positive integer n
there is at least one prime p such that n < p ≤ 2n,

is known as Bertrand’s postulate [19, Theorem 418]. (As all primes except 2 are
odd, its constraint n < p ≤ 2n amounts to n < p < 2n except when n = 1.)

In March 1931, the eighteen-year old Erdős found an elegant elementary proof
of Bertrand’s postulate; the following year, this proof appeared in his first pub-
lication [7]. 1 Later, Erdős became fond of quoting Nathan Fine’s couplet that
celebrated this achievement,

Chebyshev said it and I say it again:
There is always a prime between n and 2n.

The first draft of [7] was rewritten by László Kalmár, a professor at the Univer-
sity of Szeged and Erdős’s senior by eight years; as Erdős recalls in [11], he said
in the introduction that Srinivasa Ramanujan [25] found a somewhat similar
proof. Erdős’s proof (which was later reproduced in Hardy and Wright’s clas-
sic monograph [19]) and its background are described in the next five sections;
Ramanujan’s proof is reproduced in section 8.

1 Binomial coefficients

When m and k are nonnegative integers, symbol
(
m
k

)
— read “m choose k”

— denotes the number of k-point subsets of a fixed m-point set. For example,
{1, 2, . . . , 5} has precisely ten 3-point subsets, namely,

{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5},
{1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5},

1Erdős must have considered his 1929 article [6] in a Hungarian mathematics and physics
journal for high school students unimportant: in [11] he refers to [7] as “[my paper . . . ] which
was actually my very first”.
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and so
(

5
3

)
= 10. This combinatorial definition leads directly to a number of

identities such as
m∑

k=0

(
m

k

)
= 2m (1)

(both sides count all subsets of a fixed m-point set, the left-hand side groups
them by their size k), (

m

k

)
=

(
m

m− k

)
(2)

(complementation S ↔ T − S sets up a one-to-one correspondence between the
set of all k-point subsets S of a fixed m-point set T and the set of all (m− k)-
point subsets of T ), and(

m

k

)
k =

(
m

k − 1

)
(m− k + 1) (3)

(for a fixed m-point set T , both sides count the number of pairs (S, x) such that
S ⊆ T , |S| = k, and x ∈ S: the left-hand side chooses first S and then x, the
right-hand side chooses first S − {x} and then x).

Erdős’s proof of Bertrand’s postulate employs two standard inequalities which
follow easily from these identities. First, (1) with m = 2n + 1 and (2) with
m = 2n+ 1, k = n imply that (

2n+ 1

n+ 1

)
≤ 4n. (4)

Second, (3) with m = 2n guarantees that
(

2n
n

)
is the largest of the 2n + 1

binomial coefficients
(

2n
k

)
with k = 0, 1, . . . , 2n, and so it is the largest of the

2n terms in the sum 2 +
∑2n−1

k=1

(
2n
k

)
, which totals 4n by (1) with m = 2n; we

conclude that (
2n

n

)
≥ 4n

2n
whenever n ≥ 1. (5)

By definition, we have 0! = 1; induction on k using identity (3) shows that(
m

k

)
=

m!

k!(m− k)!
. (6)

This formula is also used in Erdős’s proof.

Quantities
(
m
k

)
are referred to as the binomial coefficients since they are featured

in the binomial formula

(a+ b)m =

m∑
k=0

(
m

k

)
akbm−k.
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Validity of this formula can be perceived by contemplating how its left-hand-side

(a+ b)(a+ b) · · · (a+ b)

distributes into a sum of 2m terms, each of them having the form akbm−k. The
binomial formula reduces to (1) by setting a = b = 1.

2 A lemma

Bertrand’s postulate asserts that, in a sense, primes appear in the sequence of
positive integers relatively often. Paradoxically, Erdős’s proof of the postulate
relies on a lemma asserting that they do not appear too often: the product of
all primes not exceeding a positive integer m is less than 4m.

In number theory it is customary to reserve the letter p for primes; in particular,
Erdős’s lemma can be recorded as∏

p≤m

p < 4m for every positive integer m. (7)

In 1939, a proof of (7) simpler than Erdős’s original proof was found indepen-
dently and almost simultaneously by Erdős and by Kalmár (see [11]). This proof
goes by induction on m. The induction basis verifies (7) when m ≤ 2. In the
induction step, we consider an arbitrary integer m greater than 2 and assume
that

∏
p≤k p < 4k whenever k < m; then we distinguish between two cases. If

m is even, then ∏
p≤m

p =
∏

p≤m−1

p < 4m−1.

If m is odd, then m = 2n+ 1 with n ≥ 1; since(
2n+ 1

n+ 1

)
=

(n+ 2) · (n+ 3) · . . . · (2n+ 1)

n!
,

every prime in the range n+ 1 < p ≤ 2n+ 1 divides
(

2n+1
n+1

)
, and so

∏
p≤m

p =

 ∏
p≤n+1

p

 ·
 ∏

n+1<p≤2n+1

p

 ≤
 ∏

p≤n+1

p

 · (2n+ 1

n+ 1

)
;

using the induction hypothesis and (4), we conclude that
∏

p≤m p < 4n+1 · 4n =
4m.

3 The Unique Factorization Theorem

Every child knows that a prime is a positive integer divisible by no positive
integer other than itself and the integer 1. However, not all children may be
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aware that the integer 1 is decreed to be not a prime, even though it is divisible
by no positive integer other than itself. Ruling this integer out of the set of all
primes is not an arbitrary decision: ruling it in would ruin the following theorem,
known as the Fundamental Theorem of Arithmetic or the Unique Factorization
Theorem [5].

For every positive integer n and for all primes p,
there are uniquely defined nonnegative integers e(p, n) such that

n =
∏
p

pe(p, n) .

(For each n only finitely many of the exponents e(p, n) are nonzero: if p > n,
then e(p, n) = 0.) Declaring 1 to be a prime would make the factorization no
longer unique: e(1, n) could assume any nonnegative integer value.

4 Legendre’s formula

The product 1 · 2 · . . . · m of the first m positive integers is denoted m! and
called the factorial of m. When n is the factorial m!, the exponents e(p, n) in
the unique factorization

n =
∏
p

pe(p, n)

can be calculated from a neat formula. To begin, for every choice of positive
integers s and t we have

st =

(∏
p

pe(p, s)

)
·

(∏
p

pe(p, t)

)
=
∏
p

pe(p, s)+e(p, t),

and so
e(p, st) = e(p, s) + e(p, t).

It follows that

e(p,m!) = e(p, 1) + e(p, 2) + . . .+ e(p,m).

We are going to express the right-hand side sum in a more transparent way. Let
us begin with the example of p = 2 and m = 9. Here,

e(2, 1) + e(2, 2) + . . .+ e(2, 9) = 0 + 1 + 0 + 2 + 0 + 1 + 0 + 3 + 0;

of the nine terms,

• every second one contributes at least one unit to the total
and there are 4 such terms,
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• every fourth one contributes at least two units to the total
and there are 2 such terms,

• every eighth one contributes at least three units to the total
and there is 1 such term,

• every 16th one contributes at least four units to the total
and there are no such terms;

these observations make it clear that

0 + 1 + 0 + 2 + 0 + 1 + 0 + 3 + 0 = 4 + 2 + 1 + 0.

This identity can be illustrated by the array

i=4
i=3 ©
i=2 © ©
i=1 © © © ©

j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9

where column j holds a stack of e(2, j) coins: the sum 0+1+0+2+0+1+0+3+0
of the heights of the nine stacks counts the total number of coins and the sum
4 + 2 + 1 + 0 counts the same number row by row. In general, for any choice of
p and m, there are stacks 1, 2, . . . ,m and stack j holds e(p, j) coins. Counting
the total number e(p, 1) + e(p, 2) + . . .+ e(p,m) of coins row by row, we end up
with the sum bm/pc+ bm/p2c+ bm/p3c+ · · · (where, as usual, bxc denotes x
rounded down to the nearest integer): a coin appears in row i and column j if
and only if e(p, j) ≥ i, which is the case if and only if j is a multiple of pi. It
follows that

e(p,m!) =

∞∑
i=1

⌊
m

pi

⌋
(where only finitely many terms in the infinite sum are not zero). This formula
was presented by Adrien-Marie Legendre in the second edition of his Essai sur
la Théorie des Nombres, published in 1808.

5 Erdős’s proof of Bertrand’s postulate

5.1 The plan.

Given a positive integer n, we shall choose a positive integer N and prove that∏
p≤n

pe(p,N) <
∏
p≤2n

pe(p,N) , (8)
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which obviously implies Bertrand’s postulate. Our choice is N =
(

2n
n

)
. Since

formula (6) with m = 2n and k = n reads

N =
2n · (2n− 1) · (2n− 2) . . . · (n+ 1)

n!
,

it is clear that all prime divisors of N are at most 2n, and so∏
p≤2n

pe(p,N) = N.

We propose to prove that ∏
p≤n

pe(p,N) <
4n

2n
; (9)

since (5) reads 4n/2n ≤ N , inequality (8) will then follow.

5.2 A formula for e(p,N).

We will use the formula

e(p,N) =

∞∑
i=1

(⌊
2n

pi

⌋
− 2

⌊
n

pi

⌋)
, (10)

which follows directly from (6) combined with Legendre’s formula. Note that

b2xc − 2 bxc =

{
0 if 0 ≤ x− bxc < 1/2 ,

1 if 1/2 ≤ x− bxc < 1 ,

and so ⌊
2n

pi

⌋
− 2

⌊
n

pi

⌋
= 0 or 1 for all i. (11)

5.3 An upper bound on pe(p,N).

Given p and n, consider the largest integer j such that pj ≤ 2n. By (10) and
(11), we have

e(p,N) =

j∑
i=1

(⌊
2n

pi

⌋
− 2

⌊
n

pi

⌋)
≤ j.

and so
pe(p,N) ≤ 2n. (12)
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5.4 Splitting the left-hand side of (9).

We will partition the set of all primes not exceeding n into three classes:

• the set S of primes p such that p ≤
√

2n,

• the set M of primes p such that
√

2n < p ≤ 2n/3,

• the set L of primes p such that 2n/3 < p ≤ n.

This classification reflects the size of e(p,N): as we are about to prove,

p ∈M ⇒ e(p,N) ≤ 1, (13)

p ∈ L ⇒ e(p,N) = 0. (14)

Our proof of these implications relies on formula (10): since

p >
√

2n and i ≥ 2 ⇒ 2n/pi < 1 ⇒ n/pi < 1,

we have

p >
√

2n ⇒ e(p,N) =

⌊
2n

p

⌋
− 2

⌊
n

p

⌋
. (15)

Implication (13) follows directly from (15) and (11); implication (14) follows
from (15) combined with the observation that p ∈ L implies b2n/pc = 2 and
bn/pc = 1.

5.5 Putting the pieces together.

By definition, we have∏
p≤n

pe(p,N) =
∏
p∈S

pe(p,N) ·
∏
p∈M

pe(p,N) ·
∏
p∈L

pe(p,N);

by (12), we have ∏
p∈S

pe(p,N) ≤ (2n)
√

2n−1;

by (13) and by (7) with m = b2n/3c, we have∏
p∈M

pe(p,N) ≤
∏
p∈M

p ≤
∏

p≤2n/3

p < 42n/3;

by (14), we have ∏
p∈L

pe(p,N) = 1;
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altogether, we have ∏
p≤n

pe(p,N) < (2n)
√

2n−1 · 42n/3.

We let lg x stand for the binary logarithm log2 x.

To prove (9), we prove that

(2n)
√

2n−1 · 42n/3 ≤ 4n

2n
,

which can be written as
(2n)

√
2n ≤ 4n/3

and then (taking binary logarithms of both sides) as
√

2n lg(2n) ≤ 2n/3, and
finally as

3 lg(2n) ≤
√

2n :

a routine exercise in calculus shows that 3 lg x ≤
√
x whenever x ≥ 1024, and

so (9) holds whenever n ≥ 512.

To complete the proof of Bertrand’s postulate, we have to verify its validity for
the remaining 511 values of n. To do this, just observe that each interval (n, 2n]
with 1 ≤ n ≤ 511 includes at least one of the primes

2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631 :

each prime in the sequence is less than twice its predecessor.

6 A strengthening of of Bertrand’s postulate

In [7, page 198], Erdős also explains how his arguments can be adapted to prove
that

there is a positive constant c such that for every positive integer n
there are at least cn/ log n primes p such that n < p ≤ 2n.

7 Proof of Bertrand’s original conjecture

It is a routine matter to adjust Erdős’s proof of Bertrand’s postulate so as to
prove Bertrand’s stronger original conjecture. Let us spell out the details.

Theorem 7.1. For every integer n greater than 3, there is a prime p such that
n < p < 2n− 2.
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Proof. As in Erdős’s proof of Bertrand’s postulate, write N =
(

2n
n

)
. Since

n < p ≤ 2n implies b2n/pc = 1 and bn/pc = 0, formula (10) shows that

n < p ≤ 2n ⇒ e(p,N) = 1,

and so ∏
n<p<2n−2

p =
N∏

p≤n p
e(p,N) ·

∏
2n−2≤p≤2n p

e(p,N)

≥ N∏
p≤n p

e(p,N) · (2n− 1)
;

as in Erdős’s proof of Bertrand’s postulate, we have

N∏
p≤n p

e(p,N)
>

4n/3

(2n)
√

2n
.

It follows that ∏
n<p<2n−2

pe(p,N) >
4n/3

(2n)1+
√

2n
.

A routine exercise in calculus shows that

3 lg x <
√
x− 1 <

x

1 +
√
x

whenever x ≥ 1024,

and so
4n/3

(2n)1+
√

2n
> 1 whenever n ≥ 512;

if 3 < n < 512, then the interval (n, 2n− 2) includes at least one of the primes

5, 7, 11, 19, 31, 59, 113, 223, 443, 883.

8 Earlier proofs of Bertrand’s postulate

8.1 Chebyshev.

In [4], Pafnuty Chebyshev (1821–1894) introduced functions

θ(x) =
∑
p≤x

ln p,

ψ(x) =

∞∑
i=1

θ(x1/i)
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(here, only finitely many terms in the infinite sum are nonzero) and proved the
identity

∞∑
j=1

ψ

(
x

j

)
= ln (bxc!) (16)

(again, only finitely many terms in the infinite sum are nonzero). With the
notation

a(i, j, p, x) =

{
1 if jpi ≤ x,
0 otherwise

his argument can be stated as

∞∑
j=1

ψ

(
x

j

)
=

∞∑
j=1

∞∑
i=1

θ

((
x

j

)1/i
)

=

∞∑
j=1

∞∑
i=1

∑
p

a(i, j, p, x) ln p

=
∑
p

∞∑
i=1

∞∑
j=1

a(i, j, p, x) ln p =
∑
p

∞∑
i=1

⌊
x

pi

⌋
ln p

=
∑
p

∞∑
i=1

⌊
bxc
pi

⌋
ln p =

∑
p

e(p, bxc!) ln p = ln(bxc!).

From (16) and from Stirling’s approximation

0 < ln(n!)−
(
n lnn− n+ 1

2 ln(2πn)
)
<

1

12n
,

he deduced by a lengthy arithmetical argument that θ(2n) − θ(n) > 0 (and so
there is a prime p such that n < p ≤ 2n) whenever n > 160.

8.2 Landau.

Chebyshev’s proof of Bertrand’s postulate reappeared, with slight modifications,
in §17 – §20 of a monograph [21] written by Edmund Landau (1877–1938). One
of Landau’s shortcuts involves the observation (inequalities (1), (2) in §18 of
[21]) that (16) implies

ln (bxc!)− 2 ln
(
b 1

2xc!
)

= ψ(x)− ψ
(

1
2 x
)

+ ψ
(

1
3 x
)
− ψ

(
1
4 x
)

+ ψ
(

1
5 x
)
− ψ

(
1
6 x
)

+ · · · ,

and so, as ψ is nondecreasing and nonnegative,

ψ(x)− ψ
(

1
2 x
)
≤ ln (bxc!)− 2 ln

(
b 1

2xc!
)
≤ ψ(x). (17)

This observation is reminiscent of Chebyshev’s observation (inequalities (6) in
§5 of [4]) that

ψ(x)− ψ
(√
x
)

= θ(x) + θ(x1/3) + θ(x1/5) + · · ·
ψ(x)− 2ψ

(√
x
)

= θ(x)− θ(x1/2) + θ(x1/3)− θ(x1/4) + θ(x1/5)− θ(x1/6) + · · ·
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and so, as θ is nondecreasing and nonnegative,

ψ(x)− 2ψ
(√
x
)
≤ θ(x) ≤ ψ(x)− ψ

(√
x
)
. (18)

8.3 Ramanujan.

In [25], Srinivasa Ramanujan (1887–1920) started out with a refinement of (17),

ψ(x)− ψ
(

1
2 x
)
≤ ln (bxc!)− 2 ln

(
b 1

2xc!
)
≤ ψ(x)− ψ

(
1
2 x
)

+ ψ
(

1
3 x
)
, (19)

and a cruder version of of (18),

ψ(x)− 2ψ
(√
x
)
≤ θ(x) ≤ ψ(x). (20)

He argued that Stirling’s approximation implies

ln (bxc!)− 2 ln
(
b 1

2xc!
)

< 3
4x whenever x > 0,

ln (bxc!)− 2 ln
(
b 1

2xc!
)

> 2
3x whenever x > 300;

these bounds combined with (19) give

ψ(x)− ψ
(

1
2x
)

< 3
4x whenever x > 0, (21)

ψ(x)− ψ
(

1
2x
)

+ ψ
(

1
3x
)

> 2
3x whenever x > 300. (22)

Then he noted that
ψ(x) < 3

2x whenever x > 0: (23)

this inequality holds trivially when 0 < x < 2 and can be verified by induction
on blg xc when x > 2, with (21) taking care of the induction step. If n ≥ 162,
then (20), (22), and (23) guarantee that

θ(2n)− θ(n) ≥ ψ(2n)− 2ψ
(√

2n
)
− ψ (n) > 4

3n− ψ
(

2
3n
)
− 2ψ

(√
2n
)

> 1
3n− 3

√
2n ≥ 0.

9 Further results and problems concerning primes

9.1 Landau’s problems

In his invited address at the fifth International Congress of Mathematicians, held
at Cambridge in 1912, Landau mentioned four conjectures, which he declared
to be ”unattackable at the present state of science”:

1. The conjecture that there are infinitely many primes of the form n2 + 1.
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2. The Goldbach conjecture: Every even integer greater than 2 is the sum of
two primes.

3. Twin prime conjecture: There are infinitely many primes p such that p+2
is prime.

4. Legendre’s conjecture that for every positive integer m there is a prime
between m2 and (m+ 1)2.

These four conjectures are now known as Landau’s problems and they remain
open.

9.2 Small gaps between consecutive primes

In number theory, it is customary to let pn denote the n-th prime:

p1 = 2, p2 = 3, p3 = 5, p4 = 7, p5 = 11, p6 = 13, p7 = 17, p8 = 19, . . . .

In this notation, Bertrand’s postulate asserts that

pn+1 − pn ≤ pn for all n.

Roger Baker, Glyn Harman, and János Pintz [2] strengthened this to

pn+1 − pn ≤ p 0.525
n for all sufficiently large n.

If this bound could be strenghtened to pn+1 − pn ≤ 2p 0.5
n for all n, then Leg-

endre’s conjecture would follow: with pn the largest prime less than m2, we
would have m2 < pn+1 < m2 + 2m. Conversely, Legendre’s conjecture im-
plies that pn+1 − pn ≤ 4p 0.5

n + 4 for all n: given pn, consider the m such that
(m− 1)2 < pn < m2 and note that pn+1 < (m+ 1)2 implies pn+1 − pn < 4m.

The twin prime conjecture asserts that

pn+1 − pn = 2 for infinitely many n.

In progress towards proving this conjecture, an epoch-making breakthrough was
made in April 2013 by Yitang Zhang [27]:

pn+1 − pn ≤ 70, 000, 000 for infinitely many n.

The challenge of reducing this upper bound was answered in April 2014 by an
online collaborative project Polymath 8 [24]:

pn+1 − pn ≤ 246 for infinitely many n.
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9.3 Large gaps between consecutive primes

Since m! + k is divisible by k whenever k is one of 2, 3, . . . ,m, integers

m! + 2, m! + 3, . . . , m! +m

include no primes. It follows that gaps pn+1−pn between consecutive primes pn
and pn+1 can be arbitrarily large. In [26], Robert Rankin (1915—2001) proved
that for some positive c and infinitely many n

pn+1 − pn > c · ln pn ln ln pn ln ln ln ln pn
(ln ln ln pn)2

(24)

In [12], Erdős wrote

I offered (perhaps somewhat rashly) $ 10 000
for a proof that (24) holds for every c.

Two distinct proofs were found simultaneously and independently by a team of
Kevin Ford, Ben Green, Sergei Konyagin, and Terence Tao [15] and by James
Maynard [22].

9.4 Primes in arithmetic progressions

An arithmetic progression is a (finite or infinite) sequence of numbers

a, a+ d, a+ 2d, a+ 3d, a+ 4d, . . . . (25)

and its length is the number of its terms. For instance, 5, 11, 17, 23, 29 is an
arithmetic progression of length five (and it consists exclusively of primes). The
set of all primes contains no infinite arithmetic progressions: if (25) has at least
a+ 1 terms and if its first term, a, is a prime, then its term a+ad is composite.
Nevertheless, Ben Green and Terence Tao proved [16] that

the set of all primes contains arbitrarily long arithmetic progressions.

This was an old conjecture, implicit in investigations carried out by Joseph-
Louis Lagrange (1736–1813) and Edward Waring (1736–1798) around 1770 and
subsumed in a special case of the “first Hardy-Littlewood conjecture” [18].

In 1974, Erdős [9, 10] offered $2,500 for a proof or disproof of his conjecture
that

every increasing sequence a1, a2, a3, . . . of positive integers such that∑∞
i=1 1/ai =∞ contains arbitrarily long arithmetic progressions.

This conjecture remains open; since the sum of the reciprocals of prime numbers
diverges (a classical result of Euler), its validity would imply the Green-Tao
theorem.
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9.5 On revient toujours à ses premiéres amours

Number theory remained one Erdős’s most important interests throughout his
life: the inventory [14] of his papers up to 1998 2 lists

• 229 on extremal problems and Ramsey theory,

• 191 on additive number theory,

• 176 on graph theory,

• 158 on multiplicative number theory,

• 149 on analysis,

• 77 on geometry,

• 69 on combinatorics,

• 52 on set theory,

• 41 on probability.

Erdős kept returning not only to the area of his first paper, but also to its proof
technique. In this first paper, he established the existence of an object with
specified properties (namely, a prime p such that n < p ≤ 2n) without providing
an efficient algorithm to find such an object. Such proofs of existence are called
non-constructive. This particular non-constructive proof is a prototype of a
scheme that Erdős used again and again in his subsequent papers unrelated to
number theory. In the general setting, its condensed outline goes as follows:

A finite set Ω of objects is divided into disjoint subsets A (for ‘acceptable’) and B
(for ‘bad’). T prove the existence of an acceptable object, assign a nonnegative
weight w(p) to every object p in Ω and show that

∑
w∈B w(p) <

∑
w∈Ω w(p).

In the special case where all objects in Ω are assigned weight 1, this way of
proving the existence of an acceptable object amounts to a computation showing
that |B| < |Ω|. Erdős used even this crudest variant with astounding success [8].
Its enhancements eventually developed into the probabilistic method [13, 1, 23].

In the special case of Bertrand’s postulate, Ω consists of all prime divisors of(
2n
n

)
; a p in Ω is acceptable if n < p ≤ 2n and bad if p ≤ n; for every p in Ω,

Erdős sets w(p) = e(p,N) log p with N =
(

2n
n

)
. We have

∑
w∈Ω w(p) = logN

by definition and Erdős proves that
∑

w∈B w(p) < logN . (This overview
explains the paradox mentioned at the beginning of Section 2: in order to bound∑

w∈A w(p) from below, we bound
∑

w∈B w(p) from above.)

2Papers co-authored with Erdős kept appearing even after 1998 and the list of his pub-
lications [17] compiled in January 2013 consists of 1525 items, the latest one dating from
2008.
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[13] P. Erdős and J. Spencer, Probabilistic methods in combinatorics, Academic
Press, New York, 1974.

[14] European Mathematical Society & FIZ Karlsruhe & Springer- Ver-
lag, Publications of (and about) Paul Erdős, https://www.emis.de
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