NOTE

a Catalogue of small miawtial. NONHAMILTONIAN GRAPHS

Jarsuz JAMROZIK
Department of Genetics and Animal Breeding, Academy of Agriculture (AR), Mickiewicza 24, 30-059 Kraków, Po and
Rafal KALINOWSKI
Institute of Mathematics, icademy of Minining and Metallurgy (AGH), Mickiewicza 30, 30-059 Kraków, Poland
\section*{Zdzislaw SKUPIEŃ*}
Mathematics Department, Kuwait University, P.O. Box 5969, Kuwait (on leave from AGH, Kr ..ów)

Received 30 Marc: 1979
Revised 15 Augusi 1979 and 5 January 1981

Abstract

In this paper a catalogue of all maximal nonhamiltonian graphs of orders up to 10 is provided. Special attention is paid to maximal nonhamiltonian graphs with non-positive scattering number since all remaining ones (with scattering number 1) are fully characterized and counted by the third auth;. we also give a sketch of the method used to produce the catalogue.

1. Preliminaries

Unless otherwise stated, we use standard notation and terminology of graph theory. All graphs we deal with are simple. Throughout, n stands for the order of a graph G (or of graphs we deal with). Only if G_{1} and G_{2} are disjoint graphs, we write $G_{1} \cup G_{2}$ and $G_{1} * G_{2}$ to denote their union and join, respectively. If $G \subseteq H$ and $V(G)=V(H)$ then G is a factor of H and H is a counterfactor of G. A block G is a minimal block if each of its proper factors either is disconnected ($n=2$) or has a cut-vertex ($n \geqslant 3$).

A nonhamiltonian graph is called MNH (maximal nonhamiltonian) if it either is a complete graph K_{1} or K_{2} or necomes hamiltonian after the addition of any new edge. In other words, a nonhamiltonian graph G is maximal if and only if any two nonadjacent vertices are connected by a hamiltonian path.

[^0]Following Jung [4], we define the scattering number $s(G)$ of G as

$$
s(G)=\max \{k(G-S)-|S|: S \subseteq V(G), k(G-S) \neq 1\}
$$

where $k(G-S)$ stands for the number of components of $G-S$. Note that $s(G) \leqslant 0$ whenever G is hamiltonian (or if and only if G is 1 -tough [2]). We find the scattering number more convenient than the notion oi toughness "or describing MNH graphs.

2. Known lbasic results

The following known properties of maximal nonhamiltonian graphs will be uscful in what follows.

Theorem (cf. [5]). Let G be a MNH graph of order n. Then the following properties hold.

Property 1. G is connected and, for $n \geqslant 3$, the connectivity $\kappa(G)$ of G satisfies the inequality $1 \leqslant \kappa(G) \leqslant \frac{1}{2}(n-1)$.

Property 2. For any two vertices u, v of G, if $\operatorname{deg}(u)+\operatorname{deg}(v) \geqslant n$ then $u v \in E(G)$.
Property 3. $\Delta(G)=n-1$ or, only for $n \geqslant 9, \Delta(G) \leqslant n-4$ and $s(G) \leqslant(1$.
Property 4. $s(G) \leqslant 1$ where the equality holds true if and only if $n \geqslant 3$ and there is an integer κ with $1 \leqslant \kappa \leqslant \frac{1}{2}(n-1)$ such that there is a partition $\left(n_{i}\right)_{i=1}^{\kappa+1}$ (where $n_{i} \geqslant n_{i-1}$ for $j=2,3, \ldots, \kappa+1$) of $n-\kappa$ into $\kappa+1$ parts such that

$$
\begin{equation*}
G=K_{\kappa}^{(0)} * \bigcup_{i=1}^{\kappa+1} K_{n_{i}}^{(i)} \tag{1}
\end{equation*}
$$

where $K_{\kappa}^{(1)}, K_{n_{1}}^{(1)}, \ldots, K_{n_{k}+1}^{(\kappa+1)}$ form a set of $\kappa+2$ mul:ally disjoint complete graphs ($K_{n_{1}}^{(i)}$ denotes the ith complete graph of order n_{i}).

Note that the upper bound for $\kappa(G)$ in Property 1 follows from the well-known Dirac's theorem of 1952 on the existence of hamiltonian circuits. Analogously, Property 2 is a simple consequence of the famous Ore's result of 1960 and reads in terminology of [1] that the n-closure of a MNH graph G is G itself. Furthermore, condition $J(G) \leqslant n-4$ in Property 3 can be replaced by the stronger one: $\delta(G)+\Delta(G) \leqslant n-2$ and $\delta(G) \geqslant 2$ (cf. [6]).

3. 1-tough MNH graphs

Since Property 4 explicitly describes all non-1-tougl: MNH graphs, we restrict our attention to remaining MNH graphs of order $n \cong$? which are 2-connected. Hence each of them contains a nonhamiltonian minins: block. Since the list of minimal blocks of orders at most 10 is available in Hobbs [3], completing the
corresponding list of MNH graphs can consist in finding all MNH counterfactors of each nonhamiltonian item of Hobbs' list. This idea together with Property 4 was used by Skupien [4] to produce the list of all MNH graphs with $n \leqslant 7$. Because the number, say b_{n}, of nonhamiltonian minimal blocks of order n increases rather rapidly with n (see Table 1, derived from [2]), we have extended Skupien's list with the help of a computer.

Table 1. Numbers of nonhamiltonian minimal blocks.

n	1	2	3	4	5	6	7	8	9	10
b_{n}	1	1	0	0	1	2	5	11	27	67

An essentially backtrack algorithm for finding the main upper triangles of the adjacency matrices of 1 -tough MNH graphs G with $7 \leqslant n \leqslant 10$ has been used. In the computer algorithm at each stage of the process of augmentation, before trying to add a new edge to a given block, the block is repiaced by its n-closure first. Some essential modifications are introduced to reduce the time of execation of the computer program. For instance, all MNH graphs G with $\Delta(G)=$ $n-1(n \geqslant 5)$ are generated from two special factors. Therefore blocks are being augmented only to graphs G with $\Delta(G) \leqslant n-4$. We omit further details.

4. The cat:Ilogue

In order to spare space we avcid much of picture drawing because the structure of many our 1 -tough MNH graphs can easily be described. First we describe A-graphs. Namely, there exist $r \times s 0-1$ matrices $A=\left[a_{i j}\right]$, the following three matrices $A_{\alpha}(\alpha=1,2,3)$ if $n \leqslant 10$ (with $r=s-1$):

$$
A_{1}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right], \quad A_{2}=\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0
\end{array}\right], \quad A_{3}=\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right],
$$

which together with ordered partitions $\left(n_{i}\right)_{i=0}$ of n where $n_{0} \geqslant s$ can fully describe the structure of many MNH graphs G. Namely, each such G contains $r+1$ mutually disjoint complete graphs $K_{n_{1}}^{(i)}, i=0.1, \ldots, r$, with s vertices of $K_{n_{0}}^{(0)}$, labelled with $v_{1}, v_{2}, \ldots, v_{\text {: }}$. Moreover, each of additional edges of G is incident to some v_{k} according to the rule that all vertices of $K_{n_{i}}^{(i)}, i \geqslant 1$, are adjacent in G to v_{i} if and only if $a_{i i}$ in A is 1 . Note that for eath $A=A_{\alpha}$ above each acceptable partition of n determines a 1 -tough MNH graph, which we shall call an A-graph. Notice also that the simplest 1 -tough nontrivially MNH graphs (which has $n=7$
vertices and was found by Chvátal [2]) is an A-graph whose structure is described by $A_{1}(\alpha=1, r=3, s=4)$ and the sequence ($4,1,1,1$), the unique acceptable ordered partition of 7 .

The second subclass consists of WM-graphs which belong to the class of graphs studied by Watkins and Mesner [8]. These are unions of five complete graphs $K_{n_{i}}^{(i)}(i=1,2, \ldots, 5)$ such that the order $n_{i} \geqslant 3$ for each i, the first two graphs as well as the three remaining ones are mutually disjoint, and, for each $i \leqslant 2$ and each $j \geqslant 3, K_{n_{i}}^{(i)}$ shares precisely one vertex with $K_{n_{i}}^{(i)}$. There is a 1-1 correspondence between WM-graphs on n vertices and the collection of all pairs of sets $\left(\left\{n_{1}, i_{2}\right\},\left\{n_{3}, n_{4}, n_{5}\right\}\right)$ with $n=\left(\sum_{i} n_{i}\right)-6, n_{i} \geqslant 3(n \geqslant 9)$.

The simplest of WM-graphs (on $n=9$ vertices) is described by the pair ($\{3\},\{3\}$) wi $h n=9$, or the sequence $(3,3,3,3,3)$. It is the unique MNH homogeneously traceable graph on 9 vertices, found independently by Skupień (see [5]).

All remaining 1 -tough MNH graphs (including K_{1} and K_{2}) are called R-graphs. For $3 \leqslant n \leqslant 10$, there are three such graphs (all of order $n=10$): the notorious Pe^{+}ersen graph and two graphs depicted in Fig. 1 and 2. Note that the graph in Fig. 2 was found independently by Skupień [7] as the smallest MNH homogeneously traceable graph G with $\Delta(G)=n-4$ (as well as with $\Delta(G)+\delta(G)=n-2$).

Fig. 1.

Fig 3.

Table 2. Numbers of MNH graphs.

n	1	2	3	4	5	6	7	8	9	10
i_{n}	-	-	1	1	3	3	6	7	1	13
a_{n}	-	-	-	-	-	-	$;$	2	6	13
w_{n}	-	-	-	-	-	-	-	-	1	2
r_{n}	1	1	-	-	-	-	-	-	-	3
m_{n}	1	1	1	1	3	3	7	9	18	3

Table 3. The list of MNH graphs G with $\boldsymbol{n} \leqslant 10$.

In Table $2, m_{n}=i_{n}+a_{n}+w_{n}+r_{n}$ is the sum of numbers of MNH graphs of order n which have scattering number $1\left(i_{n}\right)$, are A-graphs $\left(a_{n}\right)$, WM-graphs (w_{n}), or R-graphs (r_{n}), respectively.

Table 3 gives a list of all MNH graphs G with $n \leqslant 10$.

Ackmowledgement

Thanks are due to one of the referees who suggested making use of matrices \boldsymbol{A}_{α} and drew our attention to Watkins and Mesner's results.

References

[1] J.A. Bondy and V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111-135.
[2] V. Chvätal, Tough graphs and hamiltonian circuits, Discreie Math. 5 (1973) 215-228.
[3] A.M. Hobbs, A catalog of minimal blocks, J. Res. Nat. Bur. Stands. 77B (1973) 53-60.
[4] H.A. jung, On a class of posets and the corresponding compa:ability graphs, J. Comb. Theory (B) 24 (1978) 125-133.
[5] Z. Skupień, On maximal nonhamiltonian graphs, Rostock. Math. Kolloq. 11 (1979) 97-106.
[6] Z. Skupień, Degrees in homogeneously traceable graphs, Proc. Conf. Montreal, 1979, in: Annals Discrete Math. 8 (1980) 185-188.
[7] Z. Skupień, Maximum degree among vertices of a non-Haniltonian homogeneously traceable graph, to appear.
[8] M.E. Watkins and D.M. Mesner, Cycies and connectivity in graphs, Canad. J. Math. 19 (1967) 1319-1323.

[^0]: * The third author was partially supported by the Kuwait University Research Council Grant, No. SM 003.

