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In this paper a catalogue of all maximal nonhamiltonian graphs of orders up to 10 is 
provided. Special attention is paid to maximal nonhamiltonian graphs with non-positive 
scattering number since all remaining ones (with scatterirg number 1) are fully characterized 
and counted by the third auth ;I. \i;ive also give a sketch of the method used to produce the 

catalogue. 

. ies 

Unless oth$erwise stated, we use standard notation and terminology of graph 
theory. All graphs we dca.1 with are simple. Throughout, n stands for the order of 
a graph G (or of graphs we deal with). Only if G1 ana G2 are disjoint graphs, we 

write G, U G2 and G1 *G; to denote their uniorl anti join, respectively. Yf G E FI 
and V(G) = V(N) then G is a factor of H and H is a counter-factor of G. A block 
G is a minimal block if each of its proper factors either is disconnected (n = 2) or 
has a cut-vertex (n 2 3j. 

‘4 nonhamiltonian graph is ::alled MNH (maximal nonhandtonian) if it either is 
a complete g:raph & or 1F&! or becomes hamiltonian after t ition of any new 
edge. In other words, a nonhamiltonian graph G is maximal if and only if any two 
nonadjacent vertices are connected by a hamiltonian path. 

*The third author was partial.ly supported by the Kuwait University Research Council Grant, No. 

SM 003. 
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Following Jung [4], we define the scattering nrcmber s(G) of G as 

s(G)=max{k(G- S)-)SI: SC_ V(G), k(G -S)# I} 

where k( G - S) stands for the number of components of G - S. Note that s(G) s 0 
whenevver G is hamiltonian (or if and only if G is l-tough [2]). We find the 
scattering number more convenient than the notion cf toughness “or describing 
MNH graphs. 

The following known properties of maximal nonhamiltoniarr graphs will be 
useful in what follows. 

Let G be a MNH graph of order n. Then the following poperties 
hold. 

Property 1. C is conrzected and, for n 2 3, the connectivity K(G) of G xltisfies the 
i?reqmlity 1 d K(G)s$(n - 1). 

Property 2. For any two vertices u, v of G, if deg(u) +deg(u) 2 n then uu E E(G). 
Property 3. A(G) = n - 1 or, only for n a 9, AC(G) sn -4 and s(G) s (1. 
Property 4. s(G) c 1 where the equality holds true if and only if n 2 3 and there 

is an integer K with 1.~ - K c $( n - 1) such that there is a partition (ni)T T: (where 
n,atzi_! for j=2,3,. .., K+ 1) 0f n--K into K+ 1 parts such that 

K+l 

where .Kt”, K’,‘,‘. . . . , Kj,lJ’ form a set of K + 2 rnzmally disjoilzt complete graphs 
(K!,‘,’ denotes the ith complete graph of order ni). 

Note that the upper bound for K(G) in Property 1 follows from the well-known 
Dirac’s theorem of 1952 on the existence of hamiltonian circuits. Analogously, 
Property 2 is a simple consequence of the famous Ore’s result of 1960 and reads 
in terminology of [l] that the n-closure of a MNH graph G is G itself. 
Furthermore, condition LI(G) c n -4 in Property 31 can be replaceId by the 
stronger one: 6(G)+ A(G)< n - 2 and S(G) a 2 (cf. [6]). 

Since Property 4 explicitly describes all non+toug,1! MN graphs, we restrict 
emaimng MNH graphs of order 12 2 3 which are 2-con 

iltonian mini-n:.: bdock.. Since th 
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corresponding list of MNH graphs can consist in finding all MNH counterfactors 
of each nonhamiltonian item of Hobbs’ list. This idea together with Property 4 
was used by Skupieli [4] to produce the list of all MNH graphs with n s 7. 
Because the number, say b,, of nonhamiltonian minimdl blocks of order II 
increases rather rapidly with II (see Table I, derived from [2]), we have extended 
Skupieli’s list with the help of a computer. 

Table 1. Kumbers of nonhamiltonian minimal 
blocks. 
- 

n 1234567 

-I- 

8 9 10 
b,, 1 1 0 0 1 2 5 ? 1 27 67 

An essentially backtrack algorithm for finding the main upper triangles of the 
adjacency matrices of l-tough MNH graphs G with 7 s n s 10 has been used. In 
the computer algorithm at each stage of the process of augmentation, before 
trying to add a new edge to a given block, the block is replaced by its n-closure 
first. Some essential modifications are introduced to reduce the time of execution 
of the computer program. For instance, all MNH graphs G with A(G) = 
n - 1 (n 2 5) are generated from two $.#pecial factors. Therefore blocks are being 
augmented only to graphs G with A(G) c n - 4. We omit further details. 

In order to spare space we avcid much of picture drawing because the structure 
of many our l-tough MNH graphs can easily be described. First we describe 
A-graphs. Namely, there exist r x s 0 - 1 matrices A = [+I, the following three 

matrices A, (cu =1,2,3) if nsl0 (with r==s-1): 

11100 1 1 11 0 0 

A2 
1 1 0 1 0 1 1 II G 0 

.= A3= 
1 0 0 1 

1 0 0 0 1 

which together with ordered partitions (ni)[=o of n where no 2 s can fully describe 
the structure of many MNH graphs G. Namely, each such G contains r + I 
mutually disjoint complete grap (i) 

I’ = 0. 1, . . . , r, 

labelled with II,, u2, . . . , q. Moreover, %ch of a( 

wit 

ional edges of G is incident to 

some uk according to the rule that all vertices of ), i 2 1, are ad,acent in G to Uj 

if and only if I’Zij in A is 1. 
partition of n determines a l-to 
Notice also 
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vertices and was found by Chvatal [2]) is an A-graph whose structure is described 

by A&= l,r=3,s= 4) and the sequence (4, 1, , I), the unique acceptable 

ordereld partition of 7. 
Tine second subclass consists of WM-graphs which belong to the class of graphs 

studied by Watkins and Mesner [S]. These are unions of five complete graphs 
K;‘(i = 1,2,. . . ) 5) such that the order ni 23 for each i, the first two graphs as 

well as the three remaining ones are mutually disjoint, and, for each i s 2 and 
each ia3, K, G) shares precisely one vertex with K z’. There is a l-l correspon- 

dence between WM-graphs on n vertices and the collection of all pairs of sets 

({fi 1, it2), { n3, n4, n,}) with n I^ (Ci ni ) - 6, Yli 2 3 (II 2 9). 
‘The simplest of W&I-graphs (on n = 9 vertices) is described by the pair ({3}, (3)) 

wi.h n = 9, or the sequence (3,3,>, 3,3,!. It is the unique MNH homogeneously 

traceable graph on 9 vertices, found independently by Skupien (see [5]). 
Ail remaining l-tough MNH graphs (including & and K2) are called R-graphs. 

For 3 s n s 10, there are three such gralphs (all of order n = 1G): the notorious 
Petersen graph and two graphs (depicted in Fig. 1 and 2. Note that the graph in 
Fig. 2 was found independently by Skupieh [7] as the smallest MNH homogene- 
ously traceable graph G with A(G) = n - 4 (as well as with A(G) + S(G) = n - 2). 

Fig. 1. 
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Table 2. Numbers of MNH graphs. 

n 
I 

1 2 3 4 5 6 7 8 9 10 

4 
an 
wra 
‘” 

m” 

_ - 1 1 3 3 6 7 ::l 13 
’ - - - - - - , 2 6 13 

- - - - - - _ - I 2 
l 1 _ - _ _ _ _ - 7 

1 1 1 1 3 3 7 9183 

Table 3. The list of MNH graphs G with n s 10. 

n 

1 
2 

3 
4 

5 

6 

7 

8 

9 

I 0 

- 

s(G)= 1 

K n,, n2,. . . , nK +, I A-graphs WM-graphs 
-- 

u n n n 0 1 ,**+, r ~- 
n,. n 

2 n3’ Q n5 
R-graphs 

I 191 
I 291 

I 3, 1; 2,2 

! ],I, 1 

I 4, 1; 3,2 
! 2, l, l 

I 5,1;4.2;3,3 1 4 1.1.1 
!. 3, 1, 1; 2,2, 1 
5 i, 1, 1, 1 

I 6,1;5,2;4,3 1 5 1,191 
; ;,:,;:;,2,1;2,2,2 4 2,1, 1 

. , 9 

1 7,l; 6.2; 5,3; 4,4 1 6 l, l, l 
2 S,1, 1;4,2, 1 5 2,1,1 

3,3,1; 3,2,2 4 3,1,1;2,2,1 

3 3,1, 1,l; 21,2, 1,l 2 5 l, 1, l, l 

4 1,l. 1, l, 1 3 5 1, 1. 1, 1 

1 8, 1; 7,2; 6,3; 5,4 1 7 191, 1 
2 6, 1,1;5,2,1;4.3, 1 6 2,l.l 

4,2,2; 3,3,2 5 3, 1, 1; 2,2, 1 

3 4,1,1,1;3,2,1,1 I 4 3,2, 1 

2,2,2, 1 I 
4, 1,l: 

2,272 

a 2, 1, 1: 1, 1 
I 
1 2 6 1, 1, 1, 1 

5 2,1,1, 1; 1,l. 1,2 
3 6 l,l, 1. 1 

I 
1 3,3 3,333 

4,3 3,3,3 
3,3 4.3,3 

K 
K1 

2 

(1) Fig. ‘i 
(2) Fig. 2 
(3) Petersen 

graph 
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In Table 2, m, = i, + ol, + w, + Yn is t 
IZ which h$ave scattering number I (i,,), are A-graphs (a, ), 

R.-graphs (I+,*), respectively. 

graphs af order 
graphs (w,), or 

Table 3 gives 3 list of all MM-I graphs G with n s 10. 

Thank:; are due to one of the referees who suggested making use of matrices %, 
and drew our attention to Watkins and1 Mesner’s results. 
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