1. Formula: $\operatorname{ex}(F, n)=\left\lfloor n^{2} / 4\right\rfloor$.

Justification: Since K_{3} is a subgraph of F, we have $\left\lfloor n^{2} / 4\right\rfloor=$ $\operatorname{ex}\left(K_{3}, n\right) \leq \operatorname{ex}(F, n)$. To prove that $\operatorname{ex}(F, n) \leq\left\lfloor n^{2} / 4\right\rfloor$, consider an arbitrary graph with n vertices and m edges that does not contain F as a subgraph: we shall prove that $m \leq\left\lfloor n^{2} / 4\right\rfloor$. If F contains no triangle, then $m \leq \operatorname{ex}\left(K_{3}, n\right)=\left\lfloor n^{2} / 4\right\rfloor$ and we are done. If F does contain a triangle, then let T denote the set of its three vertices and let k denote the number of edges of G that have neither endpoint in T. Since G contains no F, no edges of G have exactly one endpoint in T, and so $m \leq 3+k$. To prove that $3+k \leq\left\lfloor n^{2} / 4\right\rfloor$, let us use induction on n. If $4 \leq n \leq 6$ (induction basis), then observe that $3+k \leq 3+\binom{n-3}{2} \leq\left\lfloor n^{2} / 4\right\rfloor$. If $n \geq 7$ (induction step), then observe that $k \leq\left\lfloor(n-3)^{2} / 4\right\rfloor$ by the induction hypothesis and that $3+\left\lfloor(n-3)^{2} / 4\right\rfloor \leq\left\lfloor n^{2} / 4\right\rfloor$.
2. Formula: $\operatorname{ex}\left(C_{n}, n\right)=\binom{n-1}{2}+1$.

Justification: Since the graph with n vertices that that consists of K_{n-1} and an additional edge contains no C_{n}, we have $\binom{n-1}{2}+$ $1 \leq \operatorname{ex}\left(C_{n}, n\right)$. To prove that $\operatorname{ex}\left(C_{n}, n\right) \leq\binom{ n-1}{2}+1$, consider an arbitrary graph with n vertices and m edges that contains no C_{n}. By Theorem 11.3 in the book, there is an integer k with $1 \leq k<n / 2$ such that $m \leq\binom{ n-k}{2}+k^{2}$. It remains to be shown that $\binom{n-k}{2}+k^{2} \leq\binom{ n-1}{2}+1$ whenever k is an integer such that $1 \leq$ $k<n / 2$. For this purpose, set $f(x)=(n-x)(n-x-1) / 2+x^{2}$. We aim to prove that $f(k) \leq f(1)$ for all integers k such that $1 \leq k<n / 2$. To simplify the requisite computations, let us prove a stronger statement: $f(x) \leq f(1)$ for all real numbers x such that $1 \leq x \leq n / 2$. Since $f^{\prime \prime}(x)=3 / 2$ for all x, function f is convex, and so its maximum in an arbitrary interval is attained
at a boundary of this interval. This observation reduces our task to proving that $f(n / 2) \leq f(1)$, which reads $n / 4 \leq n^{2} / 8+1$; obviously, the last inequality holds whenever $n \geq 2$.
$\operatorname{ex}\left(K_{r}, n\right)$
2.

$$
\sum_{i=1}^{n}\binom{i}{k}=\binom{n+1}{k+1}
$$

The left-hand side counts $(k+1)$-point subsets S of $\{1,2, \ldots n+$ $1\}$ as follows: First choose the largest element $i+1$ of S and then choose the k-point set $S \cap\{1,2, \ldots i\}$.

