FAIRNESS on based of $\begin{aligned} & \text { A. Jgereahi } \\ & \text { W. Sukcompong }\end{aligned}$ n agents, agent i has a valuation function ω_{i} and receives $M_{i} \subseteq M($ resource $)$

Envy-freeness : $\mu_{i}\left(M_{i}\right) \geqslant w_{i}\left(M_{j}\right) \forall_{i}$

- Proportionality: $w_{i}\left(M_{i}\right) \geqslant \frac{1}{m} w_{i}(M)$
(- Equitability: $w_{i}\left(M_{i}\right)=w_{j}\left(M_{j}\right)$

(Example) Prime-Sime presentations of candidates.

Party 1	5
2	7
3	10
4	5

$$
\begin{aligned}
& 8:(2222) \\
& 12:(3333) \\
&(2352) \\
& 15:(3453)
\end{aligned}
$$

MODEL

- $N=\{1,2, \ldots, n\}$ agents
- $M=\{1, \ldots, m\}$ indivisible goods (ihemo)
- Allocation : each item goes ho at most 1 agent
Valuation: $\left(\forall_{i} \leq m\right)\left(\mu_{i}: 2^{M} \rightarrow \mathbb{Q}\right)$
- normalised : $u(\phi)=0$
- monotonic : $u\left(M_{1}\right) \leq u\left(M_{2}\right)$ for $M_{1} \subseteq M_{2}$
- additive: $\mu\left(M^{\prime}\right)=\sum_{j \in M^{\prime}} \mu(j)$

Utilities additive: $m<w \Rightarrow$ no propertied allocation
Theorem $m=s$, each w. additive and $\mu_{i}(j)$ drawn independently from a distribution With high probability there is a proportional distribution.

Proportionality

Proof. [for the case thad $w_{i}(\dot{\gamma})$ are drawn independently frow the uniform distribution over $[0,1]]$
(a) agents $0 \quad i \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$ items * * $\psi_{j} * * * *$ add edge ($i j$) if i values j at least $2 / 3$ the probability that each edge present is $1 / 3$

- Theorem (Endoös-Réngi)
[Random graph model] \rightarrow each edge drawn independently in random with probability $r=r(|V|)]$
$p=\log n / n+\omega(1 / n)$ then with high probability, the graph contains a perfect matching.

(b) Theorem (Chernoff 52)
$x_{1} \ldots, x_{k}$ independent random variables in $[0,1]$ and les $X=x_{1}+\ldots+x_{k}$. Thew $(\forall \varepsilon \in(0, n))$

$$
\begin{aligned}
& (\forall \varepsilon \in(0,1)) \\
& P_{r}[X \geqslant(1+\varepsilon) E[X]] \leq e^{-\frac{\varepsilon^{2} E[X]}{3}}
\end{aligned}
$$

In our case

$E\left[x_{i}\right]=1 / 2$
$E(X)=n / 2$ Hence the proportional share of each argent i satisfies $\frac{1}{n} w_{i}(M) \sim \frac{1}{2}$ with high probability

Concluding In the perfect nothing, each edge has value $\geqslant 2 / 3$ while $\frac{1}{n} \mu_{i}(M) \sim 1 / 2$ 。

Envy -Freeness $(\forall i j)\left(M_{i}\left(M_{i}\right) \geqslant \omega_{i}\left(M_{j}\right)\right)$
For additive wilities, envg-freeress implies profortionalikg:

$$
w^{\prime} \cdot \mu_{i}\left(M_{i}\right)^{\prime} \supset\left(u_{i}\left(M_{1}\right)+\ldots+\mu_{i}\left(M_{n}\right)=\mu_{i}(M)\right.
$$

- $m<n \Rightarrow n \sigma$ envg-free allocation exists
$\therefore \mu=n$: each agent receives exactly one idem \Rightarrow all igents need to have different sop items : unlikely!!
Theorem $m=\Omega(n \log (n)$ (additive "m behaves like $n \log n$ for large mi, u" Then an allocation maximising social veltare [sum of agents utilities] is envy-free with high probability.
(*) $m=n+\sigma(n) \Rightarrow$ envy allocation unlibely to exist

Proof again elementary.

Theorem (Manurangsi, Subsompeng 2019) - m divisible by $n \Rightarrow$ enny-fru abocakion exists with high probabiling as long as $m \geqslant 2 m$

- else, envy-pree allocation is unlikely ben whew $m=\backsim(n \log n / \log \log n)$.

Eng -freeness up to one good (EF1) Agent i may envy agent j, but the envy can be eliminated by removing an item from $j^{\prime} \rho$ bundle.
(*) Can be satisfied by the (additive) round-robin aborithm:

- the agents Make burns choosing their favorite item fran the remaining inters
- i ahead of \dot{r} then in every round, i does not eng \dot{r}
- i behind j thew consider the first round
to start with isth first pick. Then i does not envy \dot{j} up to j^{\prime} the first pick.

Nash welfare of an allocation is the product of the agent's utilities $\prod_{i=1}^{n} w_{i}\left(m_{i}\right)$
Theorem (Caragiannis et al 2016) An allocation maximising the Nash welfare io EF1.

Pareto optimal we cannot moke some agent better off without making another agent worse off.

Arbitrary monotonic valuations Liphonetal 2004

Enng-ugcle elimination algorithm

1. Allocate one good at a time in arbitrary order
2. Maintain envy graph with the agents as its vertices, and an edge $(i j): \longrightarrow$ if i envies $\dot{\gamma}$ with respect to the current partial allocation.
3. At each step, the next good allocated ho an agent with no incoming edge.
Any ogre that arises is eliminated by giving i's bundle to i far any edge in the cole.

Enng-freeners up the lng good (EFX) i mag envy but the envy eliminated by removing ANY item from $g^{\prime \prime} s$ bundle.
Thin (Plant, Roughgarden 2018)
An EFX allocation alvaro exisdo for identical monotonic valuations.
Arbibtrerg monotonic valuations: existence open for $\geqslant 3$ agent
K : set of resoukces k_{i} those avaibble for agent i [Example: different vaccines]
B. Singh, 2020
M_{i} : weight of aglet i
$f: \in\langle 0,1\rangle$ initial coverage of agent:
$\gamma_{i} \in\langle 0,1\rangle$ final coverage of agent:
Agent \rightarrow a group of people
F : lost function
Allocation is balanced
betwem agents i, i^{\prime} if

$$
w_{i} F\left(\gamma_{i}\right)=v_{i^{\prime}} F\left(\gamma_{i^{\prime}}\right)
$$

marginal losses are in inverse proportion ho their weights.

Justifiable complain
i^{\prime} has a justifiable complain if
(1) i' has coverage less than 100%
(2) Another user i receives a positive allocation from a resource shared with:'
(3) coverages of i, i are balanced
(4) i^{\prime} did not receive any allocation of this shared resource or i received 100% average.

Allocation satisfying $(2),(2),(3)$
is proportionally fair if:
$y_{i^{\prime}}<1$ and $x_{i k}>0$ for $k \in k_{i} \cap k_{i}$.
介

$$
y_{i}<1 \text { and } x_{i^{\prime} k}>0
$$

